Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:09:45.676Z Has data issue: false hasContentIssue false

Optical Diagnostics for Metallurgical Processes.

Published online by Cambridge University Press:  22 February 2011

R. L. Williamson
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185.
H. C. Peebles
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185.
W. A. Hareland
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185.
F. J. Zanner
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185.
Get access

Abstract

Many industrially important metallurgical processes are accompanied by the emission of light, the analysis of which often supplies useful information concerning the current state of the process while also providing insight into the details of specific process mechanisms. Optical diagnostic techniques are finding an increasingly wide range of application throughout the metallurgical community. This paper discusses the application of emission spectroscopy and imaging techniques to the analysis of such diverse processes as vacuum arc remelting, laser welding, and arc welding. A discussion of these techniques will be presented addressing such subjects as instrumentation, data analysis, the kind of information available and its potential impact on the selection of process parameters. Special attention will be given to discussing the difficulties encountered in applying these diagnostic technologies to “real life” processes in non-laboratory environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. see, for example, Sobelman, I. I., Atomic Spectra and Radiative Transitions, (Springer-Verlag, Berlin, 1979); or J. I. Steinfeld, Molecules and Radiation, (MIT Press, Cambridge, 1985).Google Scholar
2. Demtroder, W., Laser Spectroscopy, (Springer Verlag, Berlin, 1982), pp. 117139.Google Scholar
3. see, for example, Fuhr, J. R., Martin, G. A., Wiese, W. L., and Younger, S. M., J. Phys. Chem. Ref. Data 10, 305 (1981); or S. M. Younger, J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 7, 305 (1978).Google Scholar
4. see, for example, Cremers, C. J. and Birkebak, R. C., Appl. Opt. 5, 1057 (1966).Google Scholar
5. Lochte-Holtgreven, W., “Evaluation of Plasma Parameters,” Plasma Diagnostics, Lochte-Holtgreven, W., ed. (Wiley Interscience, New York, 1968).Google Scholar
6. Dembovsky, V., Plasma Metallurgy (Elsevier, Amsterdam, 1985), p. 50.Google Scholar
7. see, for example, Goldsmith, S. and Boxman, R. L., J. Appl. Phys., 51 3649 (1980); or F. M. Bacon and H. A. Watts, J. Appl. Phys. 46, 4758 (1975).Google Scholar
8. Murcray, F. J. and Goody, R., Appl. Opt. 17, 3117 (1978); J. W. Olesik and G. M. Hieftje, Anal. Chem. 57, 2049 (1985); C. Allemand, Appl. Opt. 22, 16 (1983).CrossRefGoogle Scholar
9. Shaw, C. B. Jr., Welding J. 54, 33s (1975).Google Scholar
10. Dunn, G. J., Allemand, C. D., and Eagar, T. W., Met. Trans. 17A, 1851 (1986).CrossRefGoogle Scholar
11. Metcalfe, J. C. and Quigley, M. B. C., Welding J. 56, 133s (1977).Google Scholar
12. Glickstein, S. S., Welding J. 55, 222s (1976).Google Scholar
13. Quigley, M. B. C., Richards, P. H., Swift-Hook, D. T., and Glick, A. E. F., J. Phys. D 6, 2250 (1973).CrossRefGoogle Scholar
14. Bennet, W. S. and Mills, G. S., Welding J. 51, 548s (1974).Google Scholar
15. Mills, G. S., Welding J. 56, 186s (1977).Google Scholar
16. Mills, G. S., Welding J. 56, 93s (1977).Google Scholar
17. Mills, G. S., Welding J. 58, 21s (1979).Google Scholar
18. Kim, E. W., Allemand, C. and Eagar, T. W., Welding J. 66, 369s (1987).Google Scholar
19. Dunn, G. J. and Eagar, T. W., Met. Trans. 17A, 1865 (1986).CrossRefGoogle Scholar
20. Blackmon, D. R. and Kearney, F. W., Welding J. 62, 37 (1983).Google Scholar
21. Kearney, F., Blackmon, D. and Ricci, W., in Innovations in Materials Processing, Bruggeman, G. and Weiss, V., eds., (Plenum Press, New York, 1985).Google Scholar
22. Bertram, L. A. and Zanner, F. J., in Metallurgical Applications of Magnetohydrodynamics, Moffat, H. K. and Proctor, M. R. E., eds. (The Metals Society, London, 1983), p. 273.Google Scholar
23. Harris, L. P., “Arc Cathode Phenomena,” in Vacuum Arcs: Theory and Application, Lafferty, J. M., ed. (Wiley, New York, 1980).Google Scholar
24. Pfender, E., ”Electric Arcs and Arc Gas Heaters,” in Gaseous Electronics, Vol.1, Hirsh, M. N. and Oskam, H. J., eds. (Academic Press, Orlando, 1978).Google Scholar
25. Zanner, F. J. and Bertram, L. A., in Proc. of the 8th Int. Conf. of Vacuum Metallurgy, Vol.1, 512 (1985).Google Scholar
26. Zanner, F. J., in Proc. Int. Conf. on Special Melting, Bhat, G. K. and Schlatter, R., eds., (Am.Vacuum Soc., 1979).Google Scholar
27. Zanner, F. J., Bertram, L. A. and Williamson, R. L., in Proc. Vacuum Metallurav Conference, Lherbier, L. W. and Bhat, G. K., eds. (Iron and Steel Society, 1987).Google Scholar
28. Zanner, F. J., Met. Trans. 10B, 133 (1979).Google Scholar
29. Williamson, R. L., Peebles, H. C., Bertram, L. A., Hareland, W. A. and Zanner, F. J., in Proc. Vacuum Metallurgy Conference, Lherbier, L. W. and Bhat, G. K., eds. (Iron and Steel Society, 1987).Google Scholar
30. Williamson, R. L., Zanner, F. J., Bertram, L. A. and Peebles, H. C., in Plasma Processing and Synthesis of Materials. Apelian, D. and Szekely, J., eds. (Materials Research Society, 1987).Google Scholar
31. Sobelman, I. I., Vainshtein, L. A., and Yukov, E. A., Excitation of Atoms and Broadening of Spectral Lines, (Springer-Verlag, New York, 1981).CrossRefGoogle Scholar
32. Ward, R. G. J., J. Iron Steel Inst. 201, 11 (1963).Google Scholar
33. Boxman, R. L. and Goldsmith, S., J. Appl. Phys. 51, 3644 (1980).Google Scholar
34. Williamson, R. L., Zanner, F. J., and Hareland, W. A., in Proceedings of the Ninth International Vacuum Metallurgy Conference on Special Melting (American Vacuum Society, 1988).Google Scholar
35. Ecker, G., “Theoretical Aspects of the Vacuum Arc,” in Vacuum Arcs: Theory and Application, Lafferty, J. M., ed. (Wiley, New York, 1980).Google Scholar
36. Kimblin, C. W., J. Appl. Phys. 45, 5235 (1974).Google Scholar
37. Herziger, G., Proc. SPIE 455, 66 (1983).CrossRefGoogle Scholar
38. Pirri, A. N., Root, R. G., and Wu, P. K. S., AIAA Journal 16, 1296 (1978).Google Scholar
39. Marcus, S., Lowder, J. E., and Mooney, D. L., J. Appl. Phys. 17, 2966 (1976).Google Scholar
40. Smith, D. C., Proc. SPIE 195, 171 (1979).CrossRefGoogle Scholar
41. Poprawe, R., Beyer, E., Bakowsky, L., Brumme, B., and Herziger, G., Optoelectronics in Engineering 6, 361 (1983).Google Scholar
42. Lewis, G. K. and Dixon, R. D., Welding J. 64, 49s (1985).Google Scholar
43. Dixon, R. D. and Lewis, G. K., Welding J. 64, 71s (1985).Google Scholar
44. Peebles, H. C. and Williamson, R. L., in Proceedings of the International Conference on Laser Materials Processing (High Temperature Society, Japan, 1987), pp. 1924.Google Scholar