Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:29:53.275Z Has data issue: false hasContentIssue false

Optical Characterization of Erbium Doped III-Nitrides Prepared by Metalorganic Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

U. Hommerich
Affiliation:
Hampton University, Department of Physics, Research Center for Optical Physics, Hampton, VA 23668, E-mail: [email protected]
J. T. Seo
Affiliation:
Hampton University, Department of Physics, Research Center for Optical Physics, Hampton, VA 23668, E-mail: [email protected]
Myo Thaik
Affiliation:
Hampton University, Department of Physics, Research Center for Optical Physics, Hampton, VA 23668, E-mail: [email protected]
J. D. MacKenzie
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
S.J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
R.G. Wilsont
Affiliation:
Consultant, Stevenson Ranch, CA 91381
J. M. Zavadat
Affiliation:
U.S. Army European Research Office, London, UK, NWl 5
Get access

Abstract

We are currently engaged in a systematic study of the optical properties of Er doped III-nitrides prepared by metalorganic molecular beam epitaxy (MOMBE). Under below-gap excitation it was observed that GaN: Er samples with [O]∼1020 cm-3 and [C]∼1021 cm-3 luminesce at 1540 nm with an intensity of more than two orders of magnitude greater than samples with low oxygen and carbon concentrations (< 1019 cm-3). Associated with the different oxygen and carbon concentrations were different thermal quenching behaviors and below-gap absorption bands. Interestingly, for above-gap excitation only small differences in absolute Er3+ PL intensity and quenching behavior were observed for samples of varying 0 and C content. Initial lifetime studies were performed and showed a rather unusual short decay time of ∼100 μts at room temperature. In order to gain more insight in the Er3+ PL, a comparison of the integrated PL intensity and lifetime was performed for the temperature range 15-500K. The result reveals that the Er3+ PL quenches above room temperature due to the onset of non-radiative decay and the reduction in excitation efficiency. All samples were also investigated for visible luminescence. Red luminescence was observed from GaN: Er on sapphire substrates under below-gap excitation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bell, R. L., J. Appl. Phys. Comm. 34, 1563 (1963).Google Scholar
2 Ennen, H., Kaufmann, U., Pomrenke, G. S., Schneider, J., Windschif, J., and Axmann, A., J. Crystal Growth 64, 165 (1983).Google Scholar
3 Pomrenke, G. S., Klein, P. B., and Langer, D. W., Rare Earth Doped Semiconductors, Material Research Society Symposium Proceedings, Vol. 301, Material Research Society, Pittsburg, 1993.Google Scholar
4 Coffa, S., Polman, A., and Schwartz, R.N., Rare Earth doped Semiconductors II, Materials Research Society Symposium Proceedings, Vol. 422, Material Research Society, Pittsburgh, PA, 1996.Google Scholar
5 Favennec, P. N., Haridon, H.L., Salvi, M., Moutonnet, D., and Guillou, Y. Le, Electr. Lett. 25, 718 (1989).Google Scholar
6 Neuhalfen, A.J. and Wessels, B.W., Appl. Phys. Lett. 60, 2657 (1992).Google Scholar
7 Choyke, W. J., Devaty, R. P., Clemen, L. L., Yoganathan, M., Pensl, G., and Hassler, Ch., Appl. Phys. Lett. 65, 1668 (1994).Google Scholar
8 Zavada, J. M. and Zhang, D., Solid-State Electronics, Vol. 38, No.7, 1285 (1995).Google Scholar
9 Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., and Zavada, J. M., Appl. Phys. Lett. 65, 992 (1994).Google Scholar
10 Qui, C.H., Leksono, M. W., Pankove, J. I., Torvik, J. T., Feuerstein, R. J., and Namavar, F., Appl. Phys. Lett. 66, 562 (1995).Google Scholar
11 Silkowski, E., Yeo, Y.K., Hengehold, R. L., Goldenberg, B., and Pomrenke, G. S., MRS Proceedings, Vol. 422, 69 (1996).Google Scholar
12 Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., and Bishop, S. G., Appl. Phys. Lett. 71, 231 (1997).Google Scholar
13 Thaik, Myo, Hommerich, U., Schwartz, R. N., Wilson, R. G., and Zavada, J.M., Appl. Phys. Lett. 71, 2641 (1997).Google Scholar
14 MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hommerich, U., Wu, X., Schwartz, R. N., Wilson, R. G., Zavada, J. M., Appl. Phys. Lett. 69, 2083 (1996).Google Scholar
15 MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hommerich, U., Wu, X., Schwartz, R. N., Wilson, R. G., Zavada, J. M., J. Cryst. Growth 175/176, 84 (1997).Google Scholar
16 Hansen, D.M., Zhang, R., Perkins, N. R., Safvi, S., Zhang, L., Bray, K.L., and Kuech, T. F., Appl. Phys. Lett 72, 1244 (1998).Google Scholar
17 Steckl, A. J. and Birkhahn, R., Appl. Phys. Lett. 73. 1701 (1998).Google Scholar
18 Steckl, A. J., Garter, M., Birkhahn, R., and Scofield, J., Appl. Phys. Lett. 73, 2450, (1998).Google Scholar
19 Torvik, J. T., Feuerstein, R. J., Qui, C. H., Pankove, J. I., and Namavar, F., J. Appl. Phys. 69 2098 (1996).Google Scholar
20 Shen, H., Pamulapati, J., Mackenzie, J. D., Ren, F., Abernathy, C. R., and Zavada, J. M., MRS Fall Meeting 1998, paper GI 1.5.Google Scholar
21 MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hommerich, U., Seo, J. T., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 72, 2710 (1998).Google Scholar
22 Miniscalco, W. J., J. of Lightwave Techn. 9, 234 (1991).Google Scholar
23 Ainslie, B. J., J. of Lightwave Techn. 9, 220 (1991).Google Scholar
24 Rhee, S. J., Kim, S., Li, X., Coleman, J. J., and Bishop, S. G., Mat. Res. Soc. Symp. Proc., Vol. 482, 667 (1998).Google Scholar
25 Wu, X., Hömmerich, U., MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Schwartz, R. N., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 70, 2126 (1997).Google Scholar
26 Benton, J. L., Eaglesham, D.J., Almonte, M., Citrin, P.H., Marcus, M. A., Adler, D.L., Jacobson, D. C., and Poate, J. M., Mat. Res. Soc. Symp. Proc., Vo. 301, 119 (1993).Google Scholar
27 Coffa, S., Priolo, F., Franzo, G., Bellani, V., Camera, A., Spineila, C., Phys. Rev. B, 48, 11782 (1993).Google Scholar
28 Takahei, K., Taguchi, A., J. Appl. Phys. 74, 1979 (1993).Google Scholar
29 Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.H., Poate, J.M., and Kimmerling, L.C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
30 Coffa, S., Priolo, F., Franzo, G., Bellani, V., Carnera, A., and Spinella, C., Mat. Res. Soc. Symp. Proc., Vol. 301, 125, 1993.Google Scholar
31 Torvik, J. T., Feuerstein, R. J., Qui, C. H., Pankove, J. I., and Namavar, F., Mat. Res. Soc. Symp. Proc., Vol. 482, 579, 1998.Google Scholar
32 Fernandez, J., Balda, R., Illarramendi, M. A., Imbusch, G. F., J. Lumin. 58, 294 (1994).Google Scholar
33 Andrews, L. J., Lempicki, A., and McCollum, B. C., J. Chem. Phys. 74, 5526 (1981).Google Scholar
34 Hoven, G. N. van den, Shin, Jung H., Polman, A., Lombardo, S., and Campisano, S. U., J. Appl. Phys. 78, 2642, 1995.Google Scholar
35 Kik, P. G., Dood, M. J. A de, Kikoin, K. and Polman, A., Appl. Phys. Lett. 70, 1721 (1997).Google Scholar
36 Birkhahn, R. and Steckl, A.J., Appl. Phys. Lett. 73, 2143 (1998).Google Scholar
37 Steckl, A. J., Garter, M., Birkhahn, R., and Scofield, J., Appl. Phys. Lett. 73, 2450, (1998).Google Scholar