Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:10:34.987Z Has data issue: false hasContentIssue false

Optical Characterization of Bulk GaN Grown from a Na/Ga Flux

Published online by Cambridge University Press:  11 February 2011

K. Palle
Affiliation:
Dept of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ, 85287–5706, U.S.A.
L. Chen
Affiliation:
Dept of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ, 85287–5706, U.S.A.
H. X. Liu
Affiliation:
Dept of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ, 85287–5706, U.S.A.
B. J. Skromme
Affiliation:
Dept of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ, 85287–5706, U.S.A.
H. Yamane
Affiliation:
Institute for Advanced Materials Processing, Tohoku University, Sendai 980–8577, Japan
M. Aoki
Affiliation:
Institute for Advanced Materials Processing, Tohoku University, Sendai 980–8577, Japan
C. B. Hoffman
Affiliation:
Dept of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, U.S.A.
F. J. DiSalvo
Affiliation:
Dept of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, U.S.A.
Get access

Abstract

Bulk GaN crystals up to several mm in size, grown by a Na/Ga flux method, have been characterized using room and low temperature photoluminescence (PL) and panchromatic cathodoluminescence (CL) imaging. Highly resolved excitonic PL spectra are obtained for material grown in a new, large-scale reactor. The crystal polarity affects the incorporation of residual Zn and Mg or Si acceptors and the deep level luminescence bands in c-oriented platelets. A Zn (A°,X) triplet structure with unusual thermalization properties and a highly resolved structural defect related PL peak are observed. Striations are found in some of the smaller platelets by CL imaging, but are absent in the prismatic crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Porowski, S., MRS Internet J. Nitride Semicond. Res. 4S1, G1.3.1G1.3.11 (1999).Google Scholar
2. Inoue, T., Seki, Y., Oda, O., Kurai, S., Yamada, Y., and Taguchi, T., Phys. Stat. Sol. (b) 223, 1527 (2001).Google Scholar
3. Aoki, M., Yamane, H., Shimada, M., Sarayama, S., and DiSalvo, F.J., J. Crystal Growth 242, 7076 (2002).Google Scholar
4. Yamane, H., Shimada, M., Sekiguchi, T., and DiSalvo, F.J., J. Crystal Growth 186, 812 1998).Google Scholar
5. Aoki, M., Yamane, H., Shimada, M., Sekiguchi, T., Hanada, T., Yao, T., Sarayama, S., and DiSalvo, F.J., J. Crystal Growth 218, 712 (2000).Google Scholar
6. Aoki, M., Yamane, H., Shimada, M., Sarayama, S., and DiSalvo, F.J., Crystal Growth Des. 1, 119122 (2001).Google Scholar
7. Aoki, M., Yamane, H., Shimada, M., Kajiwara, T., Sarayama, S., and DiSalvo, F.J., Crystal Growth & Design 2, 5559 (2002).Google Scholar
8. Skromme, B. J., Palle, K., Poweleit, C. D., Yamane, H., Aoki, M. and DiSalvo, F. J., J. Crystal Growth 246, 299306 (2002).Google Scholar
9. Skromme, B.J., Palle, K.C., Poweleit, C.D., Yamane, H., Aoki, M., and DiSalvo, F.J., Appl. Phys. Lett. 81, 37653767 (2002).Google Scholar
10. Yamane, H., Shimada, M., and DiSalvo, F.J., Mater. Sci. Forum 325–326, 2124 (2000).Google Scholar
11. Kornitzer, K., Ebner, T., Grehl, M., Thonke, K., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., and Porowski, S., Phys. Stat. Sol. (b) 216, 59 (1999).Google Scholar
12. Freitas, J.A. Jr, Moore, W.J., Shanabrook, B.V., Braga, G.C.B., Lee, S.K., Park, S.S., Han, J.Y., and Koleske, D.D., J. Crystal Growth 246, 307 (2002).Google Scholar
13. Skromme, B.J., MRS Internet J. Nitride Semicond. Res. 4, 15 (1999).Google Scholar
14. Skromme, B.J., Mater. Sci. Engrg. B 50, 117125 (1997).Google Scholar
15. Skromme, B.J., Jayapalan, J., Vaudo, R.P., and Phanse, V.M., Appl. Phys. Lett. 743, 23582360 (1999).Google Scholar
16. Skromme, B.J. and Martinez, G.L., MRS Internet J. Nitride Semicond. Res. 5S1, W9.8 (2000).Google Scholar
17. Leroux, M., Beaumont, B., Grandjean, N., Lorenzini, P., Haffouz, S., Vennéguès, P., Massies, J., and Gibart, P., Mater. Sci. Engrg. B 50, 97104 (1997).Google Scholar
18. Jayapalan, J., Skromme, B.J., Vaudo, R.P., and Phanse, V.M., Appl. Phys. Lett. 73, 11881190 (1998).Google Scholar
19. Amano, H., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 27, L1384L1386 (1988).Google Scholar
20. Fischer, S., Wetzel, C., Walukiewicz, W., and Haller, E.E., in Gallium Nitride and Related Materials, ed. Ponce, F.A., Dupuis, R.D., Nakamura, S., and Edmond, J.A. (Mater. Res. Soc., Warrendale, PA, 1996) p. 571576.Google Scholar
21. Fischer, S., Steude, G., Hofmann, D.M., Kurth, F., Anders, F., Topf, M., Meyer, B.K., Bertram, F., Schmidt, M., Christen, J., Eckey, L., Holst, J., Hoffmann, A., Mensching, B., and Rauschenbach, B., J. Crystal Growth 189/190, 556560 (1998).Google Scholar