Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T22:27:59.909Z Has data issue: false hasContentIssue false

Optical and Electrical Properties of Metal Nanoclusters Embedded in a Dielectric Medium

Published online by Cambridge University Press:  01 February 2011

Frédéric Dumas-Bouchiat
Affiliation:
[email protected], Université de Limoges, SPCTS UMR CNRS 6638, France
Syed Salman Asad
Affiliation:
[email protected], Université de Limoges, SPCTS UMR CNRS 6638, France
Corinne Champeaux
Affiliation:
[email protected], Université de Limoges, SPCTS UMR CNRS 6638, France
Alain Catherinot
Affiliation:
[email protected], Université de Limoges, SPCTS UMR CNRS 6638, France
Aurelian Stanescu Crunteanu
Affiliation:
[email protected], Université de Limoges, IRCOM UMR CNRS 6615, France
Pierre Blondy
Affiliation:
[email protected], Université de Limoges, IRCOM, UMR CNRS 6615, France
Get access

Abstract

We present the synthesis and optical and electrical characterization of amorphous nanocomposite layers made of metallic nanoclusters embedded in an alumina (Al2O3) matrix (nc-M:Al2O3 with M= Ag, Cu and Co). The nanocomposites, obtained by a pulsed laser deposition (PLD)- derived method, exhibit specific optical plasma resonance absorption in the visible and UV region. The position of the absorption peaks depends on the cluster type and gives information about its dimension and nature (metal or oxide). The results fit well with the size and shape distribution recorded by transmission electron microscopy (TEM). Electrical properties and conduction mechanisms of nc-Co:Al2O3 layers were investigated for different doping levels and in temperature range of 303-473 K. It was concluded that space charge limited currents theory (SCLC) can be assumed as major conduction mechanism, at least for intermediate doping levels (∼9 vol.%).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kreibig, U. and Vollmer, M., “Optical Properties of Metal Clusters”, Springer, Berlin (1995).Google Scholar
[2] Shalaev, V. M., Physics Reports 272, 61 (1996).Google Scholar
[3] Heilmann, A. and Kreibig, U., Eur. Phys. J. AP 10, 193202 (2000).Google Scholar
[4] Dumas-Bouchiat, F., Champeaux, C., Nagaraja, H.S., Rossignol, F., Lory, N., Catherinot, A., Blondy, P. and Cros, D., Thin Solid Films, 453–454, 296299 (2004).Google Scholar
[5] Kittel, C., “Physique de l'état solide”, 7ème édition, Dunod, Paris, (1998).Google Scholar
[6] Ashcroft, Neil W. and Mermin, N. D., “Solid State Physics”, International Edition, Saunders College, Philadelphia, (1976).Google Scholar
[7] Doyle, W.T., Phys. Rev. 111, 10671072 (1958).Google Scholar
[8] van Huis, N.A., van Veen, A., Schut, H., Eijt, S.W.H., Kooi, B.J., De Hosson, J.Th.M., Himba, T., Rev. Adv. Mater. Sci. 4, 6064 (2003).Google Scholar
[9] Celep, G., Cottancin, E., Lermé, J., Pellarin, M., Arnaud, L., Huntzinger, J.R., Vialle, J.L., Broyer, M., Palpant, B., Boisron, O. and Mélinon, P., Phys. Rev. B 70, 165409165419 (2004).Google Scholar
[10] Orlianges, J.C., Doctoral Thesis No 69–2003, Université de Limoges, France (2003).Google Scholar
[11] Mott, N. F., Philos. Mag. 19, 835 (1969).Google Scholar
[12] Sze, S.M., “Physics of semiconductor Devices”, 2nd ed., Wiley, New-York (1981).Google Scholar