No CrossRef data available.
Published online by Cambridge University Press: 03 September 2012
Si-doping of cubic GaN epilayers grown by an rf plasma-assisted molecular beam epitaxy on semi-insulating GaAs (001) substrates is investigated by secondary ion mass spectroscopy (SIMS), photoluminescence (PL) and by Hall-effect measurements. SIMS measurements show a homogeneous incorporation of Si in cubic GaN epilayers up to concentrations of 5*1019 cm−3. PL shows a clear shift of the donor-acceptor emission to higher energies with increasing Si-doping. Above a Si-flux of 1*1011cm−2s−1 the near band edge lines merge to one broad band due to band gap renormalization and conduction band filling effects. The influence of the high dislocation density (≈1011cm−2) in c-GaN:Si on the electrical properties is reflected in the dependence of the electron mobility on the free carrier concentration. We find that dislocations in cubic GaN act as acceptors and are electrically active.