Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:48:24.945Z Has data issue: false hasContentIssue false

Optical Absorptions and EL2-Like Defects in Low Temperature Grown Molecular-Beam-Epitaxial GaAs

Published online by Cambridge University Press:  26 February 2011

S. K. So
Affiliation:
Department of Physics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong
M. H. Chan
Affiliation:
Department of Physics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong
K. T. Chan
Affiliation:
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
Get access

Abstract:

The optical absorptions and the defect densities of GaAs grown by low temperature molecular-beam-epitaxy at growth temperatures between 200-580 °C were evaluated by photothermal deflection spectroscopy. The shapes of the absorption spectra exhibit EL2-like characteristics. Defect densities were found to be in the range of 1018-1019 cm−3. The PDS phase spectra were shown to be useful to differentiate the absorptions of the epilayer from those of the bulk.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Look, David C., Thin Solid Films 231, 61 (1993).Google Scholar
2. Kaminska, M., Weber, E. R., Liliental-Weber, Z., Leon, R., and Rek, Z. U., J. Vac. Sci. Technol. B 7, 710 (1989).Google Scholar
3. Sun, H.-J., Watkins, G. D., Rong, F. C., Fotiadis, L., and Poindexter, E. H., Appl. Phys. Lett. 60, 718 (1992).Google Scholar
4. Krambrock, K., Linde, M., Spaeth, J. M., Look, D. C., Bliss, D., and Walukiewicz, W., Semicond. Sci. Technol. 7, 1037 (1992).Google Scholar
5. Manasreh, M. O., Look, D. C., Evans, K. R., and Stutz, C. E., Phys. Rev. B 41, 10272 (1990).Google Scholar
6. Look, D. C., Walters, D. C., Mier, M., Stutz, C. E., and Brierley, S. K., Appl. Phys. Lett. 60, 2900 (1992).Google Scholar
7. Look, D. C., Walters, D. C., Manasreh, M. O., Sizelove, J. R., Stutz, C. E., and Evans, K. R., Phys. Rev. B 42, 3578 (1990).Google Scholar
8. Look, D. C., Walters, D. C., Robinson, G. D., Sizelove, J. R., Mier, M. G., and Stutz, C. E., J. Appl. Phys. 74, 306 (1993).Google Scholar
9. Ohbu, I., Takahama, M., and Hiruma, K., Appl. Phys. Lett. 61, 1679 (1992).Google Scholar
10. Yu, P. W., Reynolds, D. C., and Stutz, C. E., Appl. Phys. Lett. 61, 1432 (1992).Google Scholar
11. Wood, C. E. C., Woodcock, J., and Harris, J. J., Inst. Phys. Conf. Ser. 45, 29 (1979).Google Scholar
12. Stall, R. A., Wood, C. E. C., Kirchner, P. D., and Eastman, L. F., Electron. Lett. 16, 171 (1980).Google Scholar
13. Silverbery, P., Omling, P., and Samuelson, L., Appl. Phys. Lett. 52, 1689 (1988).Google Scholar
14. Brierley, S. K. and Lehr, D. S., Appl. Phys. Lett. 55, 2426 (1989).Google Scholar
15. Jackson, W.B., Amer, N.M., Boccara, A.C., and Fournier, D., Appl. Opt. 20, 1333 (1981).Google Scholar
16. Mandelis, Andreas, J. Appl. Phys. 54, 3404 (1983).Google Scholar
17. Sakaki, H., in III–V Semiconductor Materials and Devices, (Malik, R. J. ed., Amsterdam, North-Holland, 1989), p. 217.Google Scholar
18. Zammit, U., Gasparrini, F., Marinelli, M., Pizzoferrato, R., Scudieri, F., and Martellucci, S., J. Appl. Phys. 69, 2577 (1991).Google Scholar
19. Zammit, U., Marinelli, M., and Pizzoferrato, R., J. Appl. Phys. 69, 3286 (1991).Google Scholar