Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T16:04:01.766Z Has data issue: false hasContentIssue false

On-Particle EDS Analysis of Bimetallic, Carbon-Supported Catalysts

Published online by Cambridge University Press:  10 February 2011

Deborah L. Boxall
Affiliation:
Department of Chemistry, Vanderbilt University, Nashville, TN 37235
Edward A. Kenik
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Charles M. Lukehart
Affiliation:
Department of Chemistry, Vanderbilt University, Nashville, TN 37235
Get access

Abstract

Thermolysis of single-source molecular precursors has been used to prepare carbon-supported Pt1Sn1, Pt1Ru1, and Pt3Mo1 alloy nanoparticles. On-particle, high spatial resolution energy dispersive spectroscopy (HR-EDS) has been used to determine the extent of compositional variability between particles in the nanocomposite. The loss of volatile Ru and Mo oxides during the course of the HR-EDS analysis results in average compositions greatly enriched in Pt. Mathematical correction for loss of these volatile species results in average metal:metal ratios comparable to those measured by bulk elemental analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wasmus, S. and Küver, A., J.. Electroanal. Chem. 461, 14 (1999).Google Scholar
2.a) Grgur, B.N., Markovic, N.M., and Ross, P.N., J. Electrochem. Soc. 146(5), 1613 (1999). b) H.A. Gasteiger, N. Markovic, P.N. Ross, Jr., and E.J. Cairns, J. Phys. Chem. 98, 617 (1994). c) M.J. Gonzalez, C.T. Hable, and M.S. Wrighton, J. Phys. Chem. B 102, 9881 (1998).Google Scholar
3.Lukehart, C.M., Boxall, D.L., Corn, J.D., Hariharasarma, M., King, W.D., Kwiatkowski, K.C., Steigerwalt, E.S., and Kenik, E.A., ACS Fuel Chem. Div. Preprints 44(4), 982 (1999).Google Scholar
4.Pregosin, P.S., and Sze, S.N., Helv. Chin Acta 61(5), 1848 (1978).Google Scholar
5.Precursor prepared via a modification of that reported by Severin, K., Polborn, K., and Beck, W., Inor. Chir. Acta 240, 339 (1995).Google Scholar
6.Boxall, D.L., Kenik, E.A., and Lukehart, C.M, Proceedings of the ASME: Advanced Energy Systems Division 39, 327 (1999).Google Scholar
7.Rodriguez, N.M., Kim, M.S., and Baker, R.T.K., J. Catal. 144, 93 (1993).Google Scholar
8.Kwiatkowski, K.C. and Lukehart, C.M., Abstr. Pap. Amn Chem. Soc. 218(Pt. 1), 466-INOR (1999).Google Scholar
9.Prado-Burguete, C., Linares-Solano, A., Rodriguez-Reinoso, F., and Lecea, C. Salinas-Martinez de, J. Catal. 115, 98 (1989).Google Scholar
10.a) Lide, D.R., ed., Handbook of Chemistry and Physics, 71st ed. (CRC Press, Boston, 1990), pp. 8-18, 819. b) D.R Rolison, P.L. Hagans, K.E. Swider, and J.W. Long, Langmuir 15, 774 (1999).Google Scholar
11.Williams, D.B. and Carter, C.B., Transmission Electron Microscopy (Plenum, New York, 1996), p. 605.Google Scholar
12.PDF card #25-614.Google Scholar
13.Radmilovic, V., Gasteiger, H.A., and Ross, P.N. Jr, J. Catal. 154, 98 (1995).Google Scholar
14.Pearson, W., A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon Press, Oxford, 1958), p. 755.Google Scholar
15.Samant, M.S., Kerkar, A.S., Bharadwaj, S.R., Dharwadkar, S.R., J. Alloys Compounds 187, 373 (1992).Google Scholar