Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T22:52:37.806Z Has data issue: false hasContentIssue false

On-Line Calorimetry in the Ethylene Coordination Polymerization

Published online by Cambridge University Press:  06 February 2014

José R. Infante-Martínez
Affiliation:
Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna #140, Saltillo, Coahuila, 25294 México
Enrique Saldívar-Guerra
Affiliation:
Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna #140, Saltillo, Coahuila, 25294 México
Odilia Pérez-Camacho
Affiliation:
Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna #140, Saltillo, Coahuila, 25294 México
Víctor Comparán-Padilla
Affiliation:
Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna #140, Saltillo, Coahuila, 25294 México
Maricela García-Zamora
Affiliation:
Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna #140, Saltillo, Coahuila, 25294 México
Get access

Abstract

The kinetic performance of metallocene type catalysts as well as their instantaneous activity is determined on line by two independent methods in the semi-batch polymerization of ethylene via metallocenes. On the basis of first-principles, both methods are described and guidelines for their implementation at a laboratory scale reactor are offered. Polymerization tests were conducted with two heterogenized metallocene catalysts showing that the direct method (based on ethylene flow measurement) and also the calorimetric method (based on energy balances) reported equivalent high quality information. The calorimetric method here developed can be readily used by the chemical practitioner as the notions and tools required for its implantation are easily grasped. It is noted that the calorimetric method has the advantage of requiring a low cost instrumentation (only thermocouples) whereas the direct method needs a relatively more sophisticated equipment (mass flow meter).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Soares, J.B.P, McKenna, T., Cheng, C.P., In Polyolefin Reaction Engineering, Asua, J.M. Ed.; Blackwell Publishing, Chapter 2, pp 29117 (2007).CrossRefGoogle Scholar
Kouzai, I., Liu, B., Wada, T., Terano, M., Macromolecular Reaction Engineering 1, 160164 (2007).CrossRefGoogle Scholar
Kiyoung-Su, H., Kee-Yon, Y., Hyun-Ku, R., Journal of Applied Polymer Science 79, 24802493 (2001).Google Scholar
Rincon, F., Esposito, M., Araujo, P., Sayer, C., Le Roux, A., Macromolecular Reaction Engineering 7(1), 2435 ( 2013).Google Scholar
Esposito, M., Sayer, C., Machado, R., Araujo, P., Macromolecular symposia 271, 3847 (2008).CrossRefGoogle Scholar
Korber, F., Hauschild, K., Fink, G., Macromolecular Chemistry and Physics 202 (17), 3329-3333 (2001).3.0.CO;2-D>CrossRefGoogle Scholar
Korber, F., Hauschild, K., Winter, M., Fink, G., Macromolecular Chemistry and Physics 202(17), 33233328 (2001)3.0.CO;2-C>CrossRefGoogle Scholar
Altarawneh, I., Gomes, V., Mourtada, S., Polymer International 58, 14271434 (2009).CrossRefGoogle Scholar
Isse, V. F., Sheibat-Othman, N., McKenna, T. F. L., The Canadian Journal of Chemical Engineering 88, 783792 (2010).Google Scholar
Moritz, H. U., In Polymer Reaction Engineering, Reichert, and Geisler, Eds., Weinheim, Germany Verlag-Chemie, pp 248266 (1989).Google Scholar