Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:09:41.308Z Has data issue: false hasContentIssue false

On the Raman Spectrum of Nanobundles of Single Wall Carbon Nanotubes

Published online by Cambridge University Press:  10 February 2011

L. Alvarez
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR CNRS 5581), Université Montpellier II, 34095 Montpellier Cedex 5, France.
A. Righi
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR CNRS 5581), Université Montpellier II, 34095 Montpellier Cedex 5, France.
S. Rols
Affiliation:
Institut Laue-Langevin, 38042 Grenoble, France.
E. Anglaret
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR CNRS 5581), Université Montpellier II, 34095 Montpellier Cedex 5, France.
J.L. Sauvajol
Affiliation:
Groupe de Dynamique des Phases Condensées (UMR CNRS 5581), Université Montpellier II, 34095 Montpellier Cedex 5, France.
Get access

Abstract

Raman scattering is used to study the structure and electronic properties of bundles of single wall carbon nanotubes. A relation between the tube diameter and the radial breathing mode frequency is derived by combining a description of the covalent bonds inside each nanotube via force constant model with a pair-potential approach to deal with the van der Waals interaction between nanotubes. In the framework of this approach a good agreement is evidenced between the diameter distribution derived from the A1g radial breathing mode frequencies and the one obtained from the analysis of the neutron diffraction spectrum. On the other hand, an investigation of the intermediate frequency range (600-1100 cm-1) of the Raman spectrum is reported. A dependence of the frequency of the modes with the excitation energy is clearly evidenced and assigned to a mode coupling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S., Science 275, 187 (1997).Google Scholar
2. Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E. and Eklund, P.C., Phys. Rev. Lett. 80, 3779 (1998).Google Scholar
3. Anglaret, E., Rols, S. and Sauvajol, J.L, Phys. Rev. Lett. 81, 4780 (1998).Google Scholar
4. Pimenta, M.A., Marucci, A., Brown, S.D.M., Matthews, M.J., Rao, A.M., Eklund, P. C., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S., J. Mater. Res. 13, 2396 (1998). M.A. Pimenta, A. Marucci, S.A. Empedocles, M.G. Bawendi, E.B. Hanlon, A.M. Rao, P. C. Eklund, R.E. Smalley, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. B 58, R16016 (1998).Google Scholar
5. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y., Synth. Metals 103, 2555 (1999).Google Scholar
6. Saito, R., Takeya, T., Kimura, T., Dresselhaus, G. and Dresselhaus, M.S., Phys. Rev. B 59, 2388 (1999).Google Scholar
7. Journet, C., Maser, W.K., Bemier, P., Loiseau, A., Chapelle, M. Lamy de la, Lefrant, S., Deniard, P., Lee, R. and Fischer, J.E., Nature 388, 756 (1997).Google Scholar
8. Maser, W.K., Munoz, E., Benito, A.M., Martinez, M.T., Fuente, G.F. de la, Maniette, Y., Anglaret, E. and Sauvajol, J. L., Chem. Phys. Lett. 292, 587 (1998).Google Scholar
9. Rols, S., Almairac, R., Henrard, L., Anglaret, E. and Sauvajol, J.L, Euro. Phys. J. B 10, 263 (1999).Google Scholar
10. Kürty, J., Kresse, G. and Kuzmany, H., Phys. Rev. B 58, R8869 (1998).Google Scholar
11. Rols, S., Benoit, C. and Sauvajol, J.L, to be published.Google Scholar
12. Henrard, L., Hernandez, E., Bemier, P. and Rubio, A., Phys. Rev. B 60, R8521 (1999).Google Scholar
13. Eklund, P.C., Holden, J.M. and Jishi, R.A., Carbon 33, 959972 (1995)Google Scholar