Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T21:03:19.009Z Has data issue: false hasContentIssue false

On the Origin of the Electrically-Induced Spectral Shift of Porous Silicon Photo- and Electro- Luminescence

Published online by Cambridge University Press:  28 February 2011

A. Bsiesy
Affiliation:
Laboratoire de Spectrométrie Physique (CNRS URA 08), Université J. Fourier de Grenoble, B.P. 87, 38402 Saint Martin d'Hères, France
M.A. Hory
Affiliation:
Laboratoire de Spectrométrie Physique (CNRS URA 08), Université J. Fourier de Grenoble, B.P. 87, 38402 Saint Martin d'Hères, France
F. Gaspard
Affiliation:
Laboratoire de Spectrométrie Physique (CNRS URA 08), Université J. Fourier de Grenoble, B.P. 87, 38402 Saint Martin d'Hères, France
R. Herino
Affiliation:
Laboratoire de Spectrométrie Physique (CNRS URA 08), Université J. Fourier de Grenoble, B.P. 87, 38402 Saint Martin d'Hères, France
M. Ligeon
Affiliation:
Laboratoire de Spectrométrie Physique (CNRS URA 08), Université J. Fourier de Grenoble, B.P. 87, 38402 Saint Martin d'Hères, France
F. Muller
Affiliation:
Laboratoire de Spectrométrie Physique (CNRS URA 08), Université J. Fourier de Grenoble, B.P. 87, 38402 Saint Martin d'Hères, France
R. Romestain
Affiliation:
Laboratoire de Spectrométrie Physique (CNRS URA 08), Université J. Fourier de Grenoble, B.P. 87, 38402 Saint Martin d'Hères, France
J.C. Vial
Affiliation:
Laboratoire de Spectrométrie Physique (CNRS URA 08), Université J. Fourier de Grenoble, B.P. 87, 38402 Saint Martin d'Hères, France
Get access

Abstract

Experimental results showing two electrically-induced phenomena, namely the voltage-tunable electroluminescence (VTEL) and the voltage-induced quenching of porous silicon photoluminescence(QPL) are given. In both cases, a spectral shift as large as 300 nm can be recorded for an external bias variation of only 0.5V. This spectral shift is characterised by a blue-shift of the whole EL line in the case of the VTEL whereas it results from a progressive and selective quenching starting by the low-energy part of the luminescence line in the case of the QPL experiments. The origin of this spectral shift is discussed in relation with an electrically-induced selective carrier injection into the silicon nanocrystallites accompanied with an enhancement of the non-radiative recombination which might take place by an Auger relaxation process. Finally, it is shown that a partial oxidation of the porous silicon layer leads to a complete loss of the selectivity of these two phenomena. This result is qualitatively discussed by considering the voltage drop distribution between the substrate and the silicon nanocrystallites. The voltage drops are modified by the growth of the oxide layer on the nanocrystallite surface leading to a modification of the energy barriers at the crystallite boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Richter, A., Steiner, P., Koslowski, F. and Lang, W., I.E.E.E on Electron Devices Letters, 691, 12 (1991).Google Scholar
2 Koshida, N. and Koyama, H., Appl. Phys. Lett., 347, 60 (1992).Google Scholar
3 Halimaoui, A., Bomchil, G., Oules, C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M. and Muller, F., Appl. Phys. Lett., 304, 59(1991).Google Scholar
4 Canham, L. T., Leong, W. Y., Beale, M. I. J., Cox, T. I. and Taylor, L., Appl. Phys. Lett., 2563, 61 (1992).Google Scholar
5 Bressers, P. M. M. C., Knapen, J. W. J., Meulenkamp, E. A. and Kelly, J. J., Appl. Phys. Lett., 108, 61 (1992).Google Scholar
6 Canham, L. T., Appl. Phys. Lett., 1046, 57 (1990).Google Scholar
7 Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F. and Oberlin, J. C., J. of Electrochem. Soc., 3450, 138 (1991).Google Scholar
8 A. BSIESY, Muller, F., Ligeon, M., Gaspard, F., Herino, R., Romestain, R. and Vial, J. C., Phys. Rev. Lett., 637, 71 (1993).Google Scholar
9 BSIESY, A., Muller, F., Mihalcescu, I., Ligeon, M., GASPARD, F., Herino, R., Romestain, R. and Vial, J. C., J. of Lumin., 29, 57 (1993).Google Scholar
10 Levy-Clement, C., Lagoubi, A., Ballutaud, D., Ozanam, F., Chazalviel, J.-N. and Neumann-Spallard, M., Appl. Surf. Sci., 408, 65/66 (1993).Google Scholar
11 Brumhead, D., Canham, L. T., Seekings, D. M. and Tufton, P. J., Electrochim. Acta, 191, 38 (1993).Google Scholar
12 Bsiesy, A., Pieri, F. et al. , to be published, (1994).Google Scholar
13 Memming, R., J. of the Electrochem. Soc., 785, 116 (1969).Google Scholar
14 Vial, J. C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R. and Macfarlane, , Phys. Rev. B, 14171, 45 (1992).Google Scholar
15 Mendez, E. E., Bastard, G., Chang, L. L., Esaki, L., Morkoc, H. and Fischer, R., Phys. Rev. B, 7101, 26 (1982).Google Scholar
16 Bsiesy, A., Vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F. and Romestain, R., J. of Electrochem. Soc., to be published (Nov. 1994).Google Scholar
17 Lannoo, M. et al. , Thin Sol. Films, in press.Google Scholar
18 Koyama, H., Oguro, T. and Koshida, N., Appl. Phys. Lett., 3177, 62 (1993).Google Scholar