Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:03:50.677Z Has data issue: false hasContentIssue false

On The Glass Forming Ability Criteria Of Bulk Metallic Glasses

Published online by Cambridge University Press:  11 February 2011

Z. P. Lu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831–6115
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831–6115
Get access

Abstract

A new criterion γ, defined as Tx/(Tg+Tl) (where Tx is the onset crystallization temperature, Tg the glass transition temperature and Tl the liquidus temperature), has been proposed for glass formation in bulk metallic glasses (BMGs). The interrelationship between this new parameter and glass-forming ability (GFA) was elaborated and discussed in comparison with other established criteria. It was found that the new criterion γ had a much better correlation with GFA than other established parameters. An approximation of the critical cooling rate for glass formation was also formulated and evaluated in the light of this new parameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Webber, M. J., in Materials Science and Technology, ed. by Cahn, R. W., Haasen, P. and Kraners, E. J. (V9, 1991), pp. 510.Google Scholar
2. Dietzel, A., Glastech. Ber., 22, 41(1968).Google Scholar
3. Dubey, K. S., Ramachandrarao, P. and Lele, S., Thermochimica Acta, 280/281, 25(1996).Google Scholar
4. Kauzman, W., Chem. Rev., 43, 219(1948).Google Scholar
5. Turnbull, D., Comtemp. Phys., 10, 473(1969).Google Scholar
6. Donald, I. W. and Davies, H. A., J. Non-cryst. Solids., 30, 77(1978).Google Scholar
7. Hruby, A., Czech. J. Physics, B22, 1187(1972).Google Scholar
8. Saad, M. and Poulain, M., Mat. Sci. Forum, 19–20, 11(1987).Google Scholar
9. Shen, T. D. and Schwarz, R. B., J Mater. Res., 14, 2107(1999).Google Scholar
10. Shen, T. D. and Schwarz, R. B., Appl Phys Lett., 75, 49(1999).Google Scholar
11. Murty, B. S. and Hono, K., Mater. Trans. JIM, 41, 1538(2000).Google Scholar
12. Waniuk, T. A., Schroers, J. and Johnson, W. L., Appl. Phys. Lett., 78, 1213(2001).Google Scholar
13. Thompson, C. V., Greer, A. L. and Spaepen, F., Acta Metall., 31, 1883(1983).Google Scholar
14. Lu, Z. P., Tan, H., Li, Y. and Ng, S. C., Scripta Mater., 42, 667(2000).Google Scholar
15. Lu, Z. P., Li, Y., Ng, S. C., J Non-Cryst. Solids, 270, 103(2000).Google Scholar
16. Lu, Z. P., PhD. thesis, National University of Singapore, 2000.Google Scholar
17. Tan, H., Lu, Z. P., Yao, H. B., Yao, B., Feng, Y. P. and Li, Y., Mater. Trans. JIM, 42, 551(2001).Google Scholar
18. Inoue, A., Nishiyama, N. and Kimura, H., Mater. Trans. JIM, 38, 179(1997).Google Scholar
19. Nishiyama, N. and Inoue, A., Appl. Phys. Lett., 80, 568(2003).Google Scholar
20. Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K., Acta Mater., 29, 2645(2001).Google Scholar
21. Inoue, A., Zhang, T., Kurosaka, K. and Zhang, W., Mater. Trans. JIM, 42, 1800(2001).Google Scholar
22. Zhang, T. and Inoue, A., Mat. Sci. Eng. A 304–306, 771(2001).Google Scholar
23. Lu, Z. P. and Liu, C. T., Acta Mater., 50, 3501(2003).Google Scholar
24. Lu, Z. P. and Liu, C. T., unpublished.Google Scholar
25. Uhlmann, D. R. and Yinnon, H., in Glasses Science and Technology (Academic Press, v1, New York, 1983), pp1.Google Scholar
26. Angell, C. A., J. Non-cryst. Solids, 131, 13(1991).Google Scholar
27. Angell, C. A., Science, 267, 1924(1995).Google Scholar
28. Davies, H. A., in Rapidly Quenched Metals III, edited by Cantor, B. (The Metals Society, London, 1978), pp1.Google Scholar
29. Weinberg, M. C., J. Non-Cryst. Solids, 167, 81(1994).Google Scholar