Published online by Cambridge University Press: 17 March 2011
In this paper, we discuss the mechanisms by which small clusters evolve through “magic” sizes into {113} defects and then, at sufficiently high dose levels, transform into dislocation loops of two types. This ripening process is mediated by the interchange of free Si(int)s between different extended defects, leading to a decrease of their formation energy. The calculation of the supersaturation of free Si-interstitials in dynamical equilibrium with these defects shows a hierarchy of levels of nonequilibrium diffusion, ranging from supersaturations S of about 106 in the presence of small clusters, through 103 in the presence of {113} defects, to S in the range 100 down to 1 as loops are formed, evolve and finally evaporate. A detailed analysis of defect energetics has been carried out and it is shown that Ostwald ripening is the key concept for understanding and modelling defect interactions during TED of dopants in silicon.