Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T02:20:37.242Z Has data issue: false hasContentIssue false

On the Defect Structure of Grain Boundaries in Ba2YCu3O7−x

Published online by Cambridge University Press:  28 February 2011

S. Nakahara
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
G. J. Fisanick
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
M. F. Yan
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
R. B. Van Dover
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
T. Boone
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
R. Moore
Affiliation:
Perkin-Elmer Physical Electronics, 5 Progress St., Edison, NJ 08820
Get access

Abstract

Correlations between observed defect structures and the orientation of planes involved in grain boundary (GB) formation in single phase, near ideal density orthorhombic Ba2YCu3O7−x are presented. Coherent boundaries involving only a low energy network of dislocations at the interface are associated with boundaries not involving the (001) basal plane, while basal-plane-faced GBs are highly defective. These results are interpreted using a model for local stress based on the known anisotropie thermal contraction of the material during cooling from sintering temperatures. Scanning Auger microscopy of in situ fractured surfaces demonstrates that there is preferential segregation of carbon at the GBs as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ekin, J. W., Adv. Ceram. Mat. 2, 586 (1987);Google Scholar
Ekin, J. W., Braganski, A. I., Panson, A. J., Capone, D. W. II, Zaluzec, N., Flandermeyer, B., de Lima, O. F., Hong, M., Kwo, J. and Liou, S. H., J. Appl. Phys. (submitted).Google Scholar
2. See, for example, Char, K., Kent, A. D., Kapitulnik, A., Beasley, M. R. and Geballe, T. H., Appl. Phys. Lett, (submitted);Google Scholar
Mankiewich, P. M., Scofield, J. H., Skocpol, W. J., Howard, R. E., Dayem, A. H. and Good, E., this proceeding.Google Scholar
3. Fisanick, G. J., van Dover, R. B., Boone, T., Yan, M. F. and Moore, R., J. Cryst. Growth, accepted for publication.Google Scholar
4. Cook, R. F., Shaw, T. M. and Duncombe, P. R., Adv. Ceram. Mat. 2, 606 (1987).Google Scholar
5. Nakahara, S., Boone, T., Yan, M. F., Fisanick, G. J. and Johnson, D. W. Jr, J. Appl. Phys., accepted for publication.Google Scholar
6. Zandbergen, H. W., Van Tendeloo, G., Okabe, T., and Amelinckx, S., Phys. Stat. Sol. (4), to be published.Google Scholar
7. Viegers, M. P. A., de Leeuw, D. M., Mutsaers, C. A. H. A., Smoorenburg, H. C. A., Hengst, J. H. T., de Vries, J. W. C. and Zalm, P. C., to be published.Google Scholar
8. Gallagher, P. K., Adv. Ceram. Mat. 2, 632 (1987);Google Scholar
O'Bryan, H. M. and Gallagher, P. K., Adv. Ceram. Mat. 2, 640 (1987).Google Scholar
9. Bender, B., Toth, L., Spann, J. R., Lawrence, S., Wallace, J., Lewis, D., Osofsky, M., Fuller, W., Skelton, E., Wolf, S., Qadri, S. and Gubser, D., Adv. Ceram. Mat 2, 506 (1987).Google Scholar
10. McCallum, R. W., Verhoeven, J. D., Noack, M. A., Gibson, E. D., Laabs, F. C, Finnemore, D. K. and Moodenbaugh, A. R., Adv. Ceram Mat 2, 388 (1987).Google Scholar
13. van Dover, R. B., unpublished results.Google Scholar