Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:35:47.835Z Has data issue: false hasContentIssue false

On the Contribution of a Nitrogen-Related Defect in the Nexafs Spectra of Thin Si3N4 Films

Published online by Cambridge University Press:  22 February 2011

E. C. Paloura
Affiliation:
Aristotle University of Thessaloniki, Physics Dept, GR-54006 Thessaloniki, Greece.
A. Knop
Affiliation:
SIETEC GmbH at BESSY, Lentzeallee 100, D-1000 Berlin 33, Germany.
U. Dobler
Affiliation:
SIETEC GmbH at BESSY, Lentzeallee 100, D-1000 Berlin 33, Germany.
K. Holldack
Affiliation:
University of Heidelberg, Institute of Applied Physical Chemistry, Im Neuenheimer Feld 253, 6900 Heidelberg, Germany BESSY, Lentzeallee 100, D-1000 Berlin 33, Germany.
S. Logothetidis
Affiliation:
Aristotle University of Thessaloniki, Physics Dept, GR-54006 Thessaloniki, Greece.
Get access

Abstract

Thin amorphous SiN films grown on Si are studied with Near Edge X-Ray Absorption Fine Structure (NEXAFS). The NEXAFS spectra of N-rich films are characterized by a strong resonance line (RL) at the onset of the N K- edge. The intensity of the RL in N-rich films increases with the N/Si ratio, while the same RL is detected in the NEXAFS spectra of stoichiometric SiN films subjected to damage with Ar+ ion bombardment. The RL is attributed to a N-related defect which is strongly localized in a pure 2p orbital. The RL, which is identified as a bulk nitride property, can be annealed out at temperatures higher than the growth temperature. It is proposed that the annealing process of the RL, which is characterized by an activation energy of 0.87eV, is due to Si-N bond formation, where the Si atoms are provided by the stressed SiN/Si interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kanicki, J. and Wagner, P., Electrochem. Soc. Proc. 87–10, 261 (1987).Google Scholar
2. Lustig, N. and Kanicki, J., J. Appl. Phys. 65, 3951 (1989).Google Scholar
3. Ren, S. Y. and Ching, W. Y., Phys. Rev. B, 23, 5454 (1981).Google Scholar
4. Krick, D. T., Lenahan, P. M. and Kanicki, J., Appl. Phys. Lett. 51, 608 (1987).Google Scholar
5. Warren, W. L., Lenahan, P. M. and Curry, S. E., Phys. Rev. Lett. 65, 207 (1990).Google Scholar
6. Warren, W. L., Rong, F. C., Poindexter, E. H., Gerardi, G. J., Kanicki, J., J. Appl. Phys. 70, 346 (1991).Google Scholar
7. Paloura, E. C., Lagowski, J. and Gatos, H. C., J. Appl. Phys. 69, 3995 (1991).Google Scholar
8. Knop, A., Doebler, U., Paloura, E. C., Logothetidis, S. and Batchelor, D., BESSY Jahresbericht 234 (1990);Google Scholar
Paloura, E. C., Knop, A., Doebler, U., Holldack, K. and Logothetidis, S., BESSY Jahresbericht, 224 (1991).Google Scholar
9. Paloura, E. C., PhD Thesis, Massachusetts Institute of Technology 1988.Google Scholar
10. Paloura, E. C., Logothetidis, S., Boultadakis, S. and Ves, S., Appl. Phys. Lett. 59, (1991).Google Scholar
11. Logothetidis, S., Petalas, J., Boultadakis, S., Markwitz, A., Paloura, E. C., Johnson, R. L. and Fuchs, D., Proceedings 7th Trieste Int. Symp. on “Wide-Band-Gap Semiconductors” Ed. Van de Walle, C. G., Trieste, Italy, June 1992.Google Scholar
12. Robertson, J., Phil. Mag. B, 63, No. 1, 47 (1991).Google Scholar
13. Kanicki, J., private communication.Google Scholar
14. Ann, S. T., Kennel, H. W., Plummera, J. D. and Tiller, W. A., J. Appl. Phys. 64, 4914 (1988).Google Scholar
15. Fahey, P., Dutton, R. W. and Moslehi, M., Appl. Phys. Lett. 43, 683 (1983).Google Scholar
16. Hemment, P. L. F., Reeson, K. J., Proc. Int. Conf. on “Pulse and Particle Beam Modification of Materials” p. 87, Akademie-Verlag, Berlin 1988.Google Scholar