Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T08:44:28.304Z Has data issue: false hasContentIssue false

Ohmic and rectifying contacts to n-SiC formed by energetic deposition of carbon

Published online by Cambridge University Press:  10 June 2014

Masturina Kracica
Affiliation:
School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne Vic 3001
Jim G. Partridge
Affiliation:
School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne Vic 3001
Dougal G. McCulloch
Affiliation:
School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne Vic 3001
Patrick W. Leech
Affiliation:
School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne Vic 3001
Anthony S. Holland
Affiliation:
School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne Vic 3001
Geoff K. Reeves
Affiliation:
School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne Vic 3001
Get access

Abstract

Energetically-deposited carbon contacts to n-type 6H-SiC have exhibited either insulating, rectifying or ohmic electrical characteristics depending on the average energy of the depositing flux and the substrate temperature. Deposition at room temperature and at a low-medium average energy (<500 eV) has resulted in carbon with a low graphitic content and insulating electrical contacts. With higher average energy and at a moderately elevated temperature (∼100 °C), the higher graphitic content contacts were rectifying with an ideality factor, η, of ∼1.8 and barrier height of ∼0.88 eV. Oriented graphitic carbon deposited at 200 °C with biases exceeding 300 V formed ohmic contacts.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Crofton, J.P.G., Porter, L. M., Williams, J. R., Phys. Status Solidi, B 202, 581 (1997).3.0.CO;2-M>CrossRefGoogle Scholar
Crofton, J. P. G., McMullin, J. R., Williams, J.R., and Bozack, M. J.. J. Appl. Phys. , 77(3), 1317 (1995).CrossRefGoogle Scholar
Goesmann, F., and Schmid-Fetzer, R.. Mater. Sci. Eng., B 46(1), 357 (1997).CrossRefGoogle Scholar
Glass, R. C., Spellman, L. M., Tanaka, S. and Davis, R. F., J. Vac. Sci. Technol. A (10), 1625 (1992).CrossRefGoogle Scholar
Harrell, W.R., Zhang, J. and Poole, K.L., J. Electron. Mater. , 31(10), 1090 (2002).CrossRefGoogle Scholar
Chung, G-S and Ahn, J-H, Microelectronic Eng , 85, 1772 (2008).CrossRefGoogle Scholar
Han, S.Y., Yang, H.W., Lee, J-L., Appl. Phys. Lett. , 82(26), 4726 (2003).CrossRefGoogle Scholar
Liu, F., Hsia, B., Carraro, C., Pisano, A.P. and Maboudian, R., Appl. Phys. Lett. , 97 262107 (2010).CrossRefGoogle ScholarPubMed
Nipoti, R., Mancarella, F., Moscatelli, F., Rizzoli, R., Zampolli, S. and Ferri, M., Electrochemical and Solid State Letters , 13, H432 (2010).CrossRefGoogle Scholar
Seyller, Th., Emtsev, K V, Speck, F., Gao, K.-Y. and Ley, L., Appl. Phys. Lett. , 88, 242103 (2006).CrossRefGoogle Scholar
Tongay, S., Schumann, T. and Hebard, A.F., Appl. Phys. Lett. , 95, 222103 (2009).CrossRefGoogle Scholar
Yatskiv, R., Grym, J., Zdansky, K., and Piksova, K., Carbon , 50, 3928 (2012).CrossRefGoogle Scholar
Kurimoto, E., Harima, H., Toda, T., Sawada, M., Iwami, M., Nakashima, S., J. Appl. Phys. , 91, 10215 (2002).CrossRefGoogle Scholar
Lau, D.W.M., McCulloch, D.G., Taylor, M.B., Partridge, J.G., McKenzie, D.R., Marks, N.A., EHT Phys. Rev. Lett. , 100(17), 176101 (2008).CrossRefGoogle Scholar
Lau, D.W.M., Moafi, A., Taylor, M.B., Partridge, J.G., McCulloch, D.G., Powles, R.C., McKenzie, D.R., Carbon , 47(14), 3263 (2009).CrossRefGoogle Scholar
Titantah, J. T. Lamoen, D., Phys. Rev., B 70, 033101 (2004).CrossRefGoogle Scholar
Stoney, G. G., Royal Society of London Proc., Series A 82, 4 (1909).CrossRefGoogle Scholar