Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:00:42.119Z Has data issue: false hasContentIssue false

Observations on Historical and Contemporary Developments in Superplasticity

Published online by Cambridge University Press:  16 February 2011

Oleg D. Sherby
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Jeffrey Wadsworth
Affiliation:
Lockheed Missiles & Space Company, Inc., Research and Development Division, O/93–10, B204, 3251 Hanover St., Palo Alto CA 94304
Get access

Abstract

The history of superplasticity is reviewed. The first scientific observation of superplasticity dates back to 1912. Sporadic reports of subsequent observations appear in the literature up to the review by Underwood in 1962. Since that time there have been a number of milestone achievements that have propelled the technology of superplasticity forward. These include commercial developments based on nickel, titanium, iron, and aluminum alloys. In more recent times the advent of superplasticity in ceramics and intermetallics has stimulated yet further interest in the field. At the present time there are major research efforts underway in the USA, USSR, Japan, China, and Europe to apply superplastic forming technology to the manufacture of complex components.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geckinli, E., Technical University of Istanbul, Istanbul, Turkey, (Private Communication, Dec., 1987).Google Scholar
2. Wadsworth, J. and Sherby, O.D., Prog. Mater. Sci., 25, 35 (1980).Google Scholar
3. Sherby, O.D. and Wadsworth, J., Sci. Am., 252(2), 112 (1985).Google Scholar
4. Bengough, G.D., J. Inst. Met., 7, 123 (1912).Google Scholar
5. Rosenhain, W. and Ewen, D., J. Inst. Met., 8, 149 (1912).Google Scholar
6. Edington, J.W., Melton, K.N., and Cutler, C.P., Prog. Mater. Sci., 21, 61 (1976).Google Scholar
7. Rosenhain, W., Haughton, J.L., and Bingham, K.E., J. Inst. Met., 23, 261 (1920).Google Scholar
8. Jenkins, C.H.M., J. Inst. Met., 40, 21 (1928).Google Scholar
9. Pearson, C.E., J. Inst. Met., 54, 111 (1934).Google Scholar
10. Bochvar, A.A. and Sviderskaya, Z.A., Izv. Akad. Nauk SSSR, Otd. Tekln. Nauk, 9, 821 (1945).Google Scholar
11. Lozinsky, M.G. and Simeonova, I.S., Acta Metall., 7, 709, (1959)Google Scholar
12. Underwood, E.E., Jour. Metals, 14, 914 (1962).Google Scholar
13. Backofen, W.A., Turner, I.R., and Avery, D.H., Trans ASM, a 980 (1964).Google Scholar
14. Chaudhari, P., “Superplasticity,” Science and Technology, September, 1968, p. 42.Google Scholar
15. Presnyakov, A.A., Superplasticity in Metals and Alloys, (Nauka, Alma Ata, 1969, in Russian).Google Scholar
16. Sherby, O.D. and Wadsworth, J., in Deformation. Processing and Structure, edited by Krauss, G., (Metals Park, Ohio, American Society for Metals, 1984), p. 355.Google Scholar
17. Tang, S., Mechanics of Superplasticity, (Kriegar, New York, 1979).Google Scholar
18. Padmanabhan, K.A. and Davies, G.J., Superplasticity, (Springer-Verlag, Berlin, 1980).Google Scholar
19. Shorshorov, M. Kh. et al., Superplasticity in Metallic Materials, (Nauka, Moscow, 1973, in Russian).Google Scholar
20. Tikhonov, A.S., Superplastic Effect in Metals and Alloys, (Nauka, Moscow, 1978, in Russian).Google Scholar
21. Smirnov, O.M., Working of Metals under Pressure in the Superplastic State, (Mashinostroeniya, Moscow, 1979, in Russian).Google Scholar
22. Novokov, I.I. and Portnoi, V.K., Superplasticity in Alloys with Ultrafine Grains, (Metallurgiya, Moscow, 1981, in Russian).Google Scholar
23. Kaibyshev, O.A., Plasticity and Superplasticity in Metals, (Metallurgiya, Moscow, 1975, in Russian).Google Scholar
24. Grabski, M.W., Superplasticity in Structural Metals, (Slask, Katowice, 1973, in Polish).Google Scholar
25. Liu, Chin (liu Qin), Superplasticity of Metals, 1989, Shanghai Jiaotong University, 1954 Hua San Road, Shanghai, China Google Scholar
26. Sherby, O.D., Sci. Jour., 5, 75 (1969).Google Scholar
27. Burke, J.J. and Weiss, V. (eds.), Ultrafine-grain Metals; (New York, Syracuse University Press, 1970).Google Scholar
28. Johnson, R.H., Metall. Rev., 15, 115 (1970).Google Scholar
29. Davies, G.J., Edington, J.W., Cutler, C.P., and Padmanabhan, K.A., J. Mater. Sci., 5, 1092 (1970).Google Scholar
30. Nicholson, R.B., in Electron Microscopy and Structures of Materials, edited by Thomas, G. et al., (Berkeley, CA, University of California Press, 1972), p. 689.Google Scholar
31. Mukherjee, A.K., in Plastic Deformation of Materials, edited by Arsenault, R.J., (Treastise on Materials Science and Technology, Vol.6, New York, Academic Press, 1975), p. 163.Google Scholar
32. Alden, T.H., in Fundamental Aspects of Structural Alloy Design, edited by Jaffee, R.T. and Wilcox, B.A., (New York, Plenum, 1977), p. 411.Google Scholar
33. Gittus, J., Creep Viscoelasticity and Creep Fracture in Solids, (London, Applied Science, 1975), p.509.Google Scholar
34. Taplin, D. M. R., Dunlop, G.L., and Langdon, T.G., Ann. Rev. Mater. Sci.,9, 151 (1979).Google Scholar
35. Mukherjee, A.K., Ann. Rev. Mater. Sci., 9, 191 (1979).Google Scholar
36. Edington, J.W., Met. Technol., 3, 138 (1976).Google Scholar
37. Wadsworth, J., Oyama, T., and Sherby, O.D., in Advances in Materials Technology in The Americas -1980, Vol. II, edited by LeMay, I., (New York, American Society of Mechanical Engineers, 1980), p. 29.Google Scholar
38. Sherby, O.D., Caligiuri, R.D., Kayali, E.S., and White, R.A., in Metal Processing, edited by Burke, J.U., 133; 1981, New York, Plenum, 1981), p. 133.Google Scholar
39. Izumi, O., J. Jpn. Soc. Technol. Plast., 16, 1015 (1975).Google Scholar
40. Poirier, J.-P., Plasticite a Haute Temperature des Solides Cristallins, Chap. 12; (Paris, Eyrolles, 1976).Google Scholar
41. Suery, M. and Baudelet, B., Rev. Phys. Appl., 13, 53 (1978).Google Scholar
42. Sherby, O.D. and Wadsworth, J., Prog. Mater. Sci., In Press, 1990.Google Scholar
43. Paton, N.E. and Hamilton, C.H. (eds.), Superplastic Forming of Structural Alloys; (Warrendale, Pa, Metallurgical Society of AIME, 1982).Google Scholar
44. Hammond, C., in Ref. 43, p. 131.Google Scholar
45. Merrick, H.F., in Ref. 43, p. 209.Google Scholar
46. Lloyd, D.J. and Moore, D.M., in Ref. 43, p. 147.Google Scholar
47. Hamilton, C.H., Bampton, C.C., and Paton, N.E., in Ref. 43, p. 173.Google Scholar
48. Ridley, N., in Ref. 43, p. 191.Google Scholar
49. Agrawal, S.P., (ed)., Superplastic Forming, (American Society for Metals, Metals Park, OH, 1985).Google Scholar
50. Pearce, R. and Kelly, L., (eds)., Superplasticity in Aerospace Aluminum, (Curdridge, Southhampton, Hampshire England, Ashford Press, 1985).Google Scholar
51. Baudelet, B. and Suery, M., (eds)., Suerplasticity, (Editions CNRS,15, Quai Anatole France, 75700, Paris, 1985).Google Scholar
52. ‘Superplasticity’, NATO/AGARD Lecture SeriesNo. 154, Springfield, VA: National Technical Information Services, 1987, and repeated as NATO/AGARD Lecture Series 168, 1989.Google Scholar
53. Mian-Tao, Hai and Zhong-Ren, Wang, eds., ‘Proceedings of Cino-Japan Joint Symposium on Superplasticity’, October 14–17, Beijing, China (1985).Google Scholar
54. Miyagawa, M. and Kobayashi, M., eds., ‘Proceedings of Cino-Janan Joint Symposium on Superplasficity’, November 18–21, Yokohama, Japan, (1986).Google Scholar
55. Hamilton, C.H. and Paton, N.E., (eds)., Superplasticity and Superplastic Forming, (Warrendale, PA, Metallurgical Society of AIME, 1988).Google Scholar
56. Kabaiyshev, O., Superplasticity in Commercial Alloys, (Moscow, Metallurgiya, (in Russian), 1984).Google Scholar
57. Sauveur, A., Iron Age, 113, 581 (1924)Google Scholar
58. Sauveur, A. and Lee, D.C., quoted in A. Sauveur's book, The Metallography and Heat Treatment of Iron and Steel, (The University Press, Cambridge, Mass., 1926).p. 108.Google Scholar
59. Koref, F., Z. Technm. Physik, 7, 544 (1926)Google Scholar
60. Wasserman, G., Arch. Eisen., 6, 347 (1932/1933)Google Scholar
61. Zackay, V.F., Parker, E.R., Fahr, D., and Bush, R., Trans. Amer. Soc. Metals, 60, 252 (1967).Google Scholar
62. de Jong, M. and Rathenau, G.W., Acta Metall., 7, 246 (1959).Google Scholar
63. Oelschlagel, D. and Weiss, V., ASM Trans. Quarterly, 52, 143 (1966).Google Scholar
64. Clinard, F.W. and Sherby, O.D., Acta Met., 12, 911 (1964)Google Scholar
65. Packer, C.M. and Sherby, O.D., Trans. ASM, 60, 21 (1967).Google Scholar
66. Lobb, R.C., Sykes, E.C., and Johnson, R.H., Metal Sci., 6, 33, (1972).Google Scholar
67. Wu, M.Y., Wadsworth, J., and Sherby, O.D., Metall. Trans., 18A, 451 (1987).Google Scholar
68. Wu, M.Y. and Sherby, O.D., Scripta Metall., 18, 773 (1984).Google Scholar
69. Wu, M.Y., Wadsworth, J., and Sherby, O.D., Scripta Metall., 271, 1159 (1987).Google Scholar
70. Gonzalez-Doncel, G., Karmarkar, S.D., Divecha, A.P., and Sherby, O.D., Composites Sci. and Tech., 35, 105 (1989).Google Scholar
71. McWhirter, N., ed., ‘The Guiness 1983 Book of World Records’, (Bantam Books, New York, NY: Marca Registrada, Bantam Books, Inc., 1983), p. 144.Google Scholar
72. Ahmed, M.M.I. and Langdon, T.G., Metall. Trans., 8A, 1832 (1977).Google Scholar
73. Nakatani, Y., Ohnishi, T., and Higashi, K., Japan Inst. Metals, 48, 113 (1984).Google Scholar
74. Langdon, T.G., Private Communication, on the work of Y. Ma and T.G. Langdon, University of Southern California, January, 1988.Google Scholar
75. Higashi, K., Private Communication, 1990.Google Scholar
76. Ashby, M.F. and Verall, R.A., Acta Metall., 21.149 (1973).Google Scholar
77. Gifkins, R.C., Metall. Trans., 7A, 1225 (1976).Google Scholar
78. Ball, A. and Hutchison, M.M., Meta Sci. J., 3, 1 (1969).Google Scholar
79. Mukerjee, A.K., Mater. Sci. Eng., 8, 83 (1971).Google Scholar
80. Langdon, T.G., Phil. Mag., 22, 689 (1970).Google Scholar
81. Gittus, J.H., Trans. AIME, J. Eng. Mater. Tech., 99, 244 (1977).Google Scholar
82. Hayden, H.W., Floreen, S., and Goodall, P.D., Metall. Trans. 3A, 833 (1972).Google Scholar
83. Arieli, A. and Mukherjee, A.K., Mater, Sci. Eng., 45, 61 (1980).Google Scholar
84. Fukuyo, H., Engineer Dissertation, Dept. of Materials Science and Engineering, Stanford University, Stanford, CA 94305, June, (1987), and H. Fukuyo, H.C. Tsai, T. Oyama, and O.D. Sherby, Work in Progress, Stanford University, 1990.Google Scholar
85. Kaibyshev, O.A., Valiev, R.Z., and Emaletdinov, A.K., Phys. Stat. Sol., 90, 197 (1985).Google Scholar
86. Wakai, F., Sakaguchi, S., and Matsuno, Y., Adv. Ceramic Mater., 1, 259 (1986).Google Scholar
87. Wakai, F. and Kato, H., Adv. Ceramic Mater., 2, 71 (1987).Google Scholar
88. Nieh, T.G., McNally, C.M., and Wadsworth, J., Scripta Metall., 22, 1297 (1988).Google Scholar
89. Nieh, T.G., McNally, C.M., and Wadsworth, J., Scripta Metall., 23, 457 (1989).Google Scholar