Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T16:00:59.464Z Has data issue: false hasContentIssue false

Observation of Ultrafast Lattice Heating in thin Metal Films using Time-resolved Electron Diffraction

Published online by Cambridge University Press:  31 January 2011

Manuel Ligges
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Carla Streubühr
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Thorsten Brazda
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Oliver Posth
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Christph Hassel
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Günter Dumpich
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Ping Zhou
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Dietrich von der Linde
Affiliation:
[email protected], University of Duisburg-Essen, Faculty of Physics, Duisburg, Germany
Get access

Abstract

We show that time-resolved electron diffraction is capable of revealing the ultrafast lattice heating in thin metal films following excitation by a femtosecond laser pulse. The build-up of the lattice temperature leads to a reduction of the diffraction intensity of the various diffraction orders due to the Debye-Waller-effect. We also observed a reduction of the transmitted (000)-signal which exhibits the same temporal evolution as the diffraction signals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hohfeld, J. Wellershoff, S. S. Güdde, J., Conrad, U. Jähnke, V., and Matthias, E. Chem. Phys. 251, 237 (2000).Google Scholar
2 Linde, D. von der, Kuhl, J. and Klingenberg, H. Phys. Rev. Lett. 44, 1505 (1980).Google Scholar
3 Kash, J. A. Tsang, J. C. and Hvam, J. M. Phys. Rev. Lett. 54, 2151 (1983).Google Scholar
4 Park, H. Wang, X. Nie, S. Clinite, R. and Cao, J. Solid State Commun. 136, 559 (2005).Google Scholar
5 Harb, M. Ernstorfer, R. Dartigalongue, T. Hebeisen, C. T. Jordan, R. E. and Miller, R. J. D. J. Phys. Chem. B110, 25308 (2005).Google Scholar
6 Ligges, M. Rajkovic, I. Zhou, P. Posth, O. Hassel, C. Dumpich, G. and Linde, D. von der, Appl. Phys. Lett. 94, 101910 (2009).Google Scholar
7 Siwick, B. J. Dwyer, J. R. Jordan, R. E. and Miller, R. J. D. J. Appl. Phys. 92, 1643 (2002); 94, 807 (2003).Google Scholar
8 Rajkovic, I. Ligges, M. Zhou, P. Payer, Th. Heringdorf, F. Meyer zu, Hoegen, M. Horn-von, and Linde, D. von der, Springer Series in Chem. Phys. 92, 110 (2009)Google Scholar
9 Larson, B. C. Tischler, J. Z. and Mills, D. M. J. Mater. Res. 1, 144 (1986).Google Scholar
10 Boersch, H. Bostanjoglo, O. and Niedrig, H. Z. Phys. 180, 407 (1964).Google Scholar
11 Ernstorfer, R. Harb, M. Hebeisen, C. T. Sciaini, G. Dartigalongue, T. and Miller, R. J. D. Science 323, 1033 (2009)Google Scholar
12 Anisimov, S. I. Kapeliovich, B. L. and Perelman, T. L. Sov. Phys. JETP 39, 375 (1974).Google Scholar
13 Elsayed-Ali, H. E., Norris, T. B. Pessot, M. A. and Mourou, G. Phys. Rev. Lett. 58, 1212 (1987).Google Scholar
14 Groeneveld, H. M. Sprik, R. and Lagedijk, A. Phys. Rev. B51, 11433 (1995).Google Scholar