Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:02:44.173Z Has data issue: false hasContentIssue false

Observation and Characterization of the Pseudomorphic to Stable Phase Transitions of Fe1-xSi on Si(111)

Published online by Cambridge University Press:  25 February 2011

N. Onda
Affiliation:
Laboratorium fur Festkorperphysik, Eidgenossische Technische Hochschule Zurich, 8093 Zurich, Switzerland
H. Sirringhaus
Affiliation:
Laboratorium fur Festkorperphysik, Eidgenossische Technische Hochschule Zurich, 8093 Zurich, Switzerland
S. Goncalves-Conto
Affiliation:
Laboratorium fur Festkorperphysik, Eidgenossische Technische Hochschule Zurich, 8093 Zurich, Switzerland
C. Schwarz
Affiliation:
Laboratorium fur Festkorperphysik, Eidgenossische Technische Hochschule Zurich, 8093 Zurich, Switzerland
E. Muller-Gubler
Affiliation:
Laboratorium fur Festkorperphysik, Eidgenossische Technische Hochschule Zurich, 8093 Zurich, Switzerland
H. Von Kanel
Affiliation:
Laboratorium fur Festkorperphysik, Eidgenossische Technische Hochschule Zurich, 8093 Zurich, Switzerland
Get access

Abstract

Pseudomorphic Fe1-x Si films have been grown on Si(111) by molecular beam epitaxy (MBE) at room temperature (RT). Structural investigations revealed that the phase crystallizes in the cubic CsCl structure with a lattice constant close to half that of Si. Upon annealing, films thicker than 15Å undergo a phase transition to the stable bulk ε-FeSi, either in epitaxial or in polycrystalline form at temperatures around 300°C. Thinner films do not transform to the ε-FeSi phase. Instead they exhibit a continuous increase of the Si content up to the stoichiometry of FeSi2 The CsCl symmetry persists, exept for prolonged annealing close to the transition to βFeSi2, where γ-FeSi2 (CaF2 ) forms as an intermediate phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

von Kanel, H., Stalder, R., Sirringhaus, H., Onda, N. and Henz, J., Appl. Surf. Sci. 53, 196, (1991)Google Scholar
[2] H. von Kanel, Mader, K.A., Muller, E., Onda, N. and Sirringhaus, H., Phys. Rev. B 45, 13807,(1992)Google Scholar
[3] Bruinsma, R. and Zangwill, A., J. Physique 47, 2055, (1986)CrossRefGoogle Scholar
[4] Froyen, S., Wei, S.-H. and Zunger, A., Phys. Rev. B 38, 10124, (1988)CrossRefGoogle Scholar
[5] von Kanel, H., Mat. Sci. Rpts. 8, 193, (1992)CrossRefGoogle Scholar
[6] Chevrier, J., Le Thanh, V., Nitsche, S. and Derrien, J., Appl. Surf. Sci. 56–58, 438, (1992)Google Scholar
[7] Alvarez, J., Hinarejos, J. J., Michel, E.G., Castro, G.R. and Miranda, R., Phys. Rev.B 45, 14042,(1992)Google Scholar
[8] Vazquez de Parga, A.L., de la Figuera, J., Ocal, C. and Miranda, R., Ultramicroscopy 42–44, 845, (1992)Google Scholar
[9] Sirringhaus, H., Onda, N., Muller, E., Muller, P., Stalder, R. and von Kanel, H., unpublishedGoogle Scholar