Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T04:28:03.680Z Has data issue: false hasContentIssue false

Numerical Simulation of SOFC Electrode Polarization Using Three-Dimensional Microstructure Reconstructed by FIB-SEM

Published online by Cambridge University Press:  10 May 2012

Naoki Shikazono
Affiliation:
Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8505, JAPAN.
Nobuhide Kasagi
Affiliation:
Department of Mechanical Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, JAPAN.
Get access

Abstract

Three-dimensional numerical simulations can provide information which cannot be obtained from experiments and can be a powerful tool for investigating reaction phenomena in solid oxide fuel cell (SOFC) electrodes. In the present study, a dual-beam focused ion beamscanning electron microscope is used to reconstruct the three dimensional microstructures of the SOFC electrodes, and their polarization characteristics are predicted by a lattice Boltzmann method. Predicted overpotentials for Ni-YSZ anode and mixed ionic and electronic conducting cathode (La0.6Sr0.4Co0.2Fe0.8O3-δ; LSCF6428) are compared with the experimental data for validation. In addition, three-dimensional distributions of electrochemical potential and current densities inside the electrode microstructures are obtained. Large non-uniformities of potential and current distributions are found in the Ni-YSZ anode, while those became much uniform in the LSCF cathode. The present method can be expected as a powerful tool for investigating local potential fields which affect local reactions and diffusion processes as well as local physical properties of the SOFC electrodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singhal, S. C. and Kendall, K., High Temperature Solid Oxide Fuel Cells , Elsevier (2002).Google Scholar
2. Wilson, J. R., Kobsiriphat, W., Mendoza, R., Chen, H.-Y., Hiller, J.M., Miller, D. J., Thornton, K., Voorhees, P.W., Adler, S. B. and Barnett, S., Nature Materials, 5, 541544 (2006).Google Scholar
3. Gostovic, D., Smith, J. R., Kundinger, D. P., Jones, K. S. and Wachsman, E. D., Electrochem. Solid-State Lett., 10 (12), B214–B217 (2007).Google Scholar
4. Smith, J. R., Chen, A., Gostovic, D., Hickey, D., Kundinger, D. P., Duncan, K. L., DeHoff, R. T., Jones, K. S. and Wachsman, E. D., Solid State Ionics, 180, 9098 (2009).Google Scholar
5. Wilson, J. R., Gameiro, M., Mischaikow, K., Kalies, W., Voorhees, P. and Barnett, S., Microsc. Microanal., 15, 7177 (2009).Google Scholar
6. Wilson, J. R., Duong, A. T., Gameiro, M., Chen, H.-Y., Thornton, K., Kalies, W., Mumm, D. R. and Barnett, S., Electrochemistry Communications, 11, 10521056 (2009).Google Scholar
7. Shearing, P. R., Golbert, J., Chater, R. J. and Brandon, N. P., Chemical Eng. Sci., 64, 39283933 (2009).Google Scholar
8. Iwai, H., Shikazono, N., Matsui, T., Teshima, H., Kishimoto, M., Kishida, R., Hayashi, D., Matsuzaki, K., Kanno, D., Saito, M., Muroyama, H., Eguchi, K., Kasagi, N., Yoshida, H., submitted to J. Power Sources (2009).Google Scholar
9. Jorgensen, S., Hansen, K. V., Larsen, R. and Bowen, J. R., Ultramicroscopy, 110, 216228 (2010).Google Scholar
10. Holzer, L., Iwanschitz, B., Hocker, Th., Münch, B., Prestat, M., Wiedenmann, D., Vogt, U., Holtappels, P., Sfeir, J., Mai, A. and Graule, Th., J. Power Sources, 196 (3), 12791294 (2011).Google Scholar
11. Joos, J., Carraro, T., Weber, A., Ivers-Tiffée, E., J. Power Sources, 196 (17), 73027307 (2011).Google Scholar
12. Vivet, N., Chupin, S., Estrade, E., Piquero, T., Pommier, P.L., Rochais, D. and Bruneton, E., J. Power Sources, 196 (18), 75417549 (2011).Google Scholar
13. Izzo, J. R. Jr., Joshi, A.S., Grew, K. N., Chiu, W. K. S., Tkachuk, A., Wang, S. H. and Yun, W., J. Electrochem. Soc., 155 (5), B504B508 (2008).Google Scholar
14. Shearing, P. R., Gelb, J., and Brandon, N. P., J. Eur. Ceram. Soc., 30, 18091814 (2010).Google Scholar
15. Joshi, A. S., Grew, K. N., Peracchio, A. A. and Chiu, W. K. S., J. Power Sources, 164, 631638 (2007).Google Scholar
16. Asinari, P., Quaglia, M. C., von Spakovsky, M. R. and Kasula, B. V., J. Power Sources, 170, 359375 (2007).Google Scholar
17. Suzue, Y., Shikazono, N. and Kasagi, N., J. Power Sources, 184, 5259 (2008).Google Scholar
18. Joshi, A. S., Grew, K. N., Izzo, J. R. Jr., Peracchio, A. A. and Chiu, W. K. S., J. Fuel Cell Science and Technology, 7, 011006 (2010).Google Scholar
19. Shikazono, N., Kanno, D., Matsuzaki, K., Teshima, H., Sumino, S. and Kasagi, N., J. Electrocchem. Soc., 157(5), B665B672 (2010).Google Scholar
20. Kanno, D., Shikazono, N., Takagi, N., Matsuzaki, K. and Kasagi, N., Evaluation of SOFC Anode Polarization Simulation using Three-Dimensional Microstructures Reconstructed by FIB Tomography, Electrochimica Acta, 56 (11), pp. 40154021 (2011).Google Scholar
21. Matsuzaki, K., Shikazono, N. and Kasagi, N., J. Power Sources, 196 (6), 30733082 (2011).Google Scholar
22. Krishna, R. and Wesselingh, J. A., Chem. Eng. Sci., 52, 861911 (1997).Google Scholar
23. Novak, V., Stepanek, F., Koci, P., Marek, M. and Kubicek, M., Chem. Eng. Sci., 65 (7), 23522360 (2010).Google Scholar
24. De Boer, B., Ph. D. Thesis, University of Twente, (1998).Google Scholar
25. Bieberle, A., Meier, L. P. and Gauckler, L. J., J. Electrochem. Soc., 148 (6), A646A656 (2001).Google Scholar
26. Bouwmeester, H. J., Otter, M. W. and Boukamp, B. A., J. Solid State Electrochem., 8, 599605 (2004).Google Scholar
27. Fleig, J., Phys. Chem. Chem. Phys., 7, 20272037 (2005).Google Scholar
28. Fleig, J., Baumann, F. S. and Maier, J., ECS Proceedings, 2005-07, 16361644 (2005).Google Scholar
29. Esquirol, A., Brandon, N. P., Kilner, J. A. and Mogensen, M., J. Electrochem. Soc., 151, A1847A1855 (2004).Google Scholar
30. Gallivan, M. A., Noble, D. R., Georgiadis, J. G. and Buckius, R. O., Int. J. Numer. Methods Fluids, 25, 249263 (1997).Google Scholar
31. Young, J.B. and Todd, B., Int. J. Heat Mass Transfer, 48, 53385353 (2005).Google Scholar