Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T00:26:44.514Z Has data issue: false hasContentIssue false

Numerical Simulation of Electronic Behavior in a Finite Superlattice With a Tamm State: A Possible Submillimeter Wave Emitter Without Optical Pumping

Published online by Cambridge University Press:  10 February 2011

J. E. Manzoli
Affiliation:
Ciěncia e Engenharia de Materials - Universidade de São Paulo (USP), CX 369, ZIP-13560–970, São Carlos, SP, Brazil, [email protected]
O. Hipólito
Affiliation:
Universidade de Mogi das Cruzes, Departamento do Nucleo de Pesquisas Tecnológicas, Mogi das Cruzes, SP, Brazil
Get access

Abstract

We propose a semiconductor heterostructure consisting of six coupled quantum wells of GaAs plus a larger one, all inside Al(x)Ga(l−x)As, x=0.35. Our simulation prevents that the localized electronic eigen-state at the large well, the Tamm state, will oscillate when the voltage applied across these “finite superlattice” varies fast. We include exchange and correlation effects in the local density approximation and made the self-consistent calculations to the electrons at 77K varying the voltage in a gate contact of the device. We obtain the effective potential, the sub-bands (mini-bands) and respective electronic densities which enable us to simulate the temporal evolution of an electronic wave-packet when the gate-voltage is switched fast. Such a switching turns the Tamm eigen-state in a wave-packet. By the simulation we conclude that this wave-packet oscillates a Tera-Hertz frequency that can emit electromagnetic radiation as a charge oscillator. We estimate the finite superlattice capacitance and it confirms the possibility of changing the Hamiltonian faster than the period of the oscillation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tanaka, I., Nakayama, M., Nishimura, H., Kawashima, K. and Fujiwara, K., Solid-State Electronics 37 (4), 863 (1994).Google Scholar
[2] Mendez, E.E. and Bastard, G., Physics Today, 34 (1993).Google Scholar
[3] Waschke, C., Roskos, H.G., Leo, K., Kurz, H. and Köhler, K., Semicond. Sci. Technol. 9, 416 (1994).Google Scholar
[4] Waschke, C., Roskos, H.G., Schwedler, R., Leo, K., Kurz, H. and Köhler, K., Physical Review Letters 70 (21), 3319 (1993).Google Scholar
[5] Ohno, H., Méndez, E.E., Brum, J.A., Hong, J.M., Agulló-Rueda, F., Chang, L.L. and Esaki, L., Physical Review Letters 64 (21), 2555 (1990).Google Scholar
[6] Roskos, H.G., Niiss, M.C., Shah, J., Leo, K., Miller, D.A.B., Fox, A.M., Schmitt-Rink, S. and Köhler, K., Phys. Rev. Lett. 68 (14), 2216 (1992).Google Scholar
[7] Dean, C., Am. J. Phys. 27, 161, (1959).Google Scholar
[8] Hedin, L., Lundqvist, B.I. - J. Phys. C: Solid St. Phys. 4 (14), 2064 (1971).Google Scholar
[9] Degani, M.H., Appl. Phys. Lett. 59 (1), 57 (1991).Google Scholar