Published online by Cambridge University Press: 28 February 2011
We report here the use of nucleotides as stabilizers in the formation of quantum-confined (‘Q-size’) CdS, with the size and composition of the nucleotide exerting a significant effect on the resultant CdS structure. In general, CdS formed from equimolar Cd+2 and S2− (6 × 10−4 M) in the presence of a number of nucleotides yields clusters possessing similar absorption spectra but which differ significantly with respect to emissive behavior and overall physical stability. CdS/polynucleotide colloids (DNA, poly [A], poly[C]) exhibit strong trap luminescence and are stable on a timescale of months, but analogous CdS prepared from the mononucleotides ATP and AMP are virtually nonemissive and flocculate within hours, even upon stabilization at lower temperatures (5 to −60°C). In addition to their preparation and spectroscopic properties, the results of TEM, AFM, and computer modeling studies on these CdS/nucleotide colloids are discussed.