Published online by Cambridge University Press: 28 February 2011
Atomic-scale observations by STM and TEM of the early stages of film growth and recent studies of the detailed composition of beams from ICB sources have led to new understandings of origins of some of the extraordinary properties of thin films deposited by ICB methods. The presence of a small fraction of atoms in the form of large clusters initiates a novel sequence of film growth steps starting with the immediate formation of stable islands for film growth. The growth of films from cluster-initiated islands leads to fundamentally altered film properties (compared to atomic beam, MBE, deposition) such as the epitaxial alignment of metal/semiconductor/ceramic multilayers grown near room temperature.