Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T05:11:07.002Z Has data issue: false hasContentIssue false

A Novel Organosiloxane Vapor Annealing Process for ImprovingElastic Modulus of Porous Low-k Films

Published online by Cambridge University Press:  17 March 2011

Kazuo Kohmura
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Shunsuke Oike
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Masami Murakami
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Hirofumi Tanaka
Affiliation:
MIRAI-ASET, Tsukuba, Japan
Syozo Takada
Affiliation:
ASRC-AIST, Tsukuba, Japan
Yutaka Seino
Affiliation:
MIRAI-ASRC-AIST, Tsukuba, Japan
Takamaro Kikkawa
Affiliation:
MIRAI-ASRC-AIST, Tsukuba, Japan RCNS, Hiroshima Univ., Higashi-Hiroshima, Japan
Get access

Abstract

A novel organosiloxane-vapor-annealing method has been developed forimproving the mechanical strength of porous silica films with a lowdielectric constant. Treatment of a porous silica film with1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) under atmospheric nitrogenabove 350 °C significantly enhanced the mechanical strength (i.e., elasticmodulus and hardness) of the film. Results of Fourier transform infraredspectroscopy (FT-IR) and thermal desorption spectroscopy (TDS) suggested theformation of cross-linked poly(TMCTS) network on the porous silica internalwall surfaces by the TMCTS treatment. Such TMCTS cross-linked network isthought to enhance the mechanical strength of the low-k film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, J. Y., Pan, F. M., Cho, A. T., Chao, K. J., Tsai, T. G., Wu, B. W., Yang, C. M., and Chang, Li, J. Electrochem. Soc. 150, F123 (2003).CrossRefGoogle Scholar
2. Smith, D. M., Ramos, T., Roderick, K. H., Wallace, S., Drage, J., Wu, H. -J., Viernes, N. and Brungardt, L. B, US Patent 6395651 (2002).Google Scholar
3. Lu, Y., Fan, H., Doke, N., Loy, D. A., Assink, R. A., LaVan, D. A., and Brinker, C. J., J. Am. Chem. Soc. 122, 5258 (2000).CrossRefGoogle Scholar
4. Ting, C. -Y., Ouyan, D. -F. and Wan, B. -Z., J. Electrochem. Soc. 150, F126 (2003).CrossRefGoogle Scholar
5. Ogawa, M., Chem. Commun. 1149 (1996).Google Scholar
6. Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Guo, Y., Soyes, H., Dunn, B., Huang, M. H., and Zink, J. I., Nature 389, 364 (1997).CrossRefGoogle Scholar
7. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B. F., and Stucky, G. D., Adv. Mater. 10, 1380 (1998).3.0.CO;2-8>CrossRefGoogle Scholar
8. Fukui, H., J. Soc. Cosmet. Chem. Jpn. 27, 3 (1993).CrossRefGoogle Scholar