Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T05:10:07.121Z Has data issue: false hasContentIssue false

Novel Organic Light-Emitting Transistors with PN-Hetero-Boundary Carrier Recombination Sites Fabricated by Lift-off Patterning of Organic Semiconductor Thin Films

Published online by Cambridge University Press:  26 February 2011

Naotoshi Suganuma
Affiliation:
[email protected], Kyoto university, Kyoto university, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
Noriyuki Shimoji
Affiliation:
[email protected], Rohm Co., Ltd., Kyoto, 615-8585, Japan
Yoshiaki Oku
Affiliation:
[email protected], Rohm Co., Ltd., Kyoto, 615-8585, Japan
Kazumi Matsushige
Affiliation:
[email protected], Kyoto university, Dept. of Electronic Sci. & Tec., Kyoto, 615-8510, Japan
Get access

Abstract

We have devised a novel organic light-emitting transistor (OLET) with PN-hetero-boundary combined with hole and electron transport materials along carrier channels. In this device, a clear modulation of the current and luminance with the gate voltage is observed. The luminance of 100 cd/m2 or more has been observed at the source-source voltage of 15 V with the turn-on voltage of 10 V or less, which is lower than that of OLETs based on a single organic material. We have implemented the horizontal PN-hetero-boundary structure for the first time by using the photolithographic patterning of the organic semiconductor thin-films. This patterning technique can be applied to fabrication of not only organic light-emitting transistors we report in this paper but also organic integrated circuits or organic displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hepp, A., Heil, H., Weise, W., Ahles, M., Schmechel, R., andSeggern, H. von, Phys. Rev. Lett. 91, 157406 (2003).Google Scholar
2. Ahles, M., Hepp, A., Schmechel, R., andSeggern, H. von, Appl. Phys. Lett. 84, 428 (2004).Google Scholar
3. Sakanoue, T., Fujiwara, E., Yamada, R., andTada, H., Appl. Phys. Lett. 84, 3037 (2004).Google Scholar
4. Sakanoue, T., Fujiwara, E., Yamada, R., andTada, H., Chem.Lett. 34, 494 (2005).Google Scholar
5. Oyamada, T., Sasabe, H., Adachi, C., Okuyama, S., Shimoji, N., andMatsushige, K., Appl. Phys. Lett. 86, 093505 (2005).Google Scholar
6. Steudel, S., Myny, K., Vusser, S. De, Genoe, J., andHeremans, P., Appl. Phys. Lett. 89, 183503 (2006).Google Scholar
7. Duffy, D. C., Jackman, R. J., Vaeth, K. M., Jensen, K. F., Whitesides, G. M., Adv. Mater. 11, 546 (1999).Google Scholar
8. Tachikawa, H., Kawabata, H., Miyamoto, R., Nakayama, K., andYokoyama, M., J. Phys. Chem. B, 109, 3139 (2005).Google Scholar
9. Dodabalapur, A., Katz, H. E., Torsi, L., andHaddon, R. C., Science 269, 1560 (1995).Google Scholar
10. Rost, C., Karg, S., Riess, W., Loi, M. A., Murgia, M., andMuccini, M., Appl. Phys. Lett. 85, 1613 (2004).Google Scholar