Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T03:45:16.049Z Has data issue: false hasContentIssue false

Novel Nanoscale Organic Materials for Optimal Photovoltaic Functions

Published online by Cambridge University Press:  26 February 2011

Lin X Chen
Affiliation:
[email protected], Argonne National Laboratory, Chemistry, 9700 South Cass Ave., Bldg, 200, Argonne, IL, 60439, United States
Dmitrii Polshakov
Affiliation:
[email protected], Argonne National Laboratory, Chemistry, 9700 South Cass Ave., Argonne, IL, 60439, United States
Shengqiang Xiao
Affiliation:
[email protected], The University of Chicago, Chemistry, 5735 South Ellis Ave., Chicago, IL, 60637, United States
Yongye Liang
Affiliation:
[email protected], The University of Chicago, Chemistry, 5735 South Ellis Ave., Chicago, IL, 60637, United States
Luping Yu
Affiliation:
[email protected], The University of Chicago, Chemistry, 5735 South Ellis Ave., Chicago, IL, 60637, United States
Get access

Abstract

Covalently linked electron donor (D) and electron acceptor (A) with conjugated organic building blocks are novel materials for potential solar cell applications, because these molecular p-n junctions can minimize the exciton diffusion and transform the charge separation from interdomain to intramolecular processes. Hence, the bottleneck of the exciton diffusion in many bulk heterojuction materials can be eliminated. Meanwhile, these planar conjugated assemblies, such as supermolecules, multiblock oligomers and polymers, have strong tendency to π-π stacking to form continuous channels for charge carriers to hop/diffuse to respective electrodes. A quartet D-A assembly has been synthesized with bis-oligothiophene (BOTH) and bis-perylenediimide (BPDI) derivatives attached to a benzo template. The electronic structures and dynamics of photoinduced charge separation and recombination of this quartet molecule and reference compounds in solutions and films were studied at isolated the molecular level in solutions as well as at the molecular assembly level in films with stacked structures. Two different dynamics of charge separation and recombination associated with two types of donor/acceptor pair conformations in solution were observed. This molecular system exhibits a more efficient charge separation than charge recombination processes in both polar and non-polar organic solvents, as well as films. More efficient charge separation and slower charge recombination due to the covalent linkage indicating that the material is a potential candidate for photovoltaic studies in solid-state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peumans, P., Yakimov, A. & Forrest, S. R. (2003) Journal of Applied Physics 93, 36933723.Google Scholar
2. Peumans, P. & Forrest, S. R. (2001) Applied Physics Letters 79, 126128.10.1063/1.1384001Google Scholar
3. Xue, J. G., Uchida, S., Rand, B. P. & Forrest, S. R. (2004) Applied Physics Letters 84, 30133015.10.1063/1.1713036Google Scholar
4. Loi, M. A., Denk, P., Hoppe, H., Neugebauer, H., Winder, C., Meissner, D., Brabec, C., Sariciftci, N. S., Gouloumis, A., Vazquez, P. & Torres, T. (2003) Journal of Materials Chemistry 13, 700704.Google Scholar
5. Stubinger, T. & Brutting, W. (2001) Journal of Applied Physics 90, 36323641.10.1063/1.1394920Google Scholar
6. Kerp, H. R., Donker, H., Koehorst, R. B. M., Schaafsma, T. J. & van Faassen, E. E. (1998) Chemical Physics Letters 298, 302308.10.1016/S0009-2614(98)01217-2Google Scholar
7. Gregg, B. A. (1996) Journal of Physical Chemistry 100, 852859.Google Scholar
8. Wohrle, D., Kreienhoop, L. & Schlettwein, D. (1996) Phthalocyanines 4, 219284.Google Scholar
9. Liu, J., Tanaka, T., Sivula, K., Alivisatos, A. P. & Frechet, J. M. J. (2004) J. Am. Chem. Soc. 126, 65506551.10.1021/ja0489184Google Scholar
10. Fogg, D. E., Radzilowski, L. H., Dabbousi, B. O., Schrock, R. R., Thomas, E. L. & Bawendi, M. G. (1997) Macromolecules 30, 84338439.10.1021/ma970626iGoogle Scholar
11. Neuteboom, E. E., Meskers, S. C. J., van Hal, P. A., van Duren, J. K. J., Meijer, E. W., Janssen, R. A. J., Dupin, H., Pourtois, G., Cornil, J., Lazzaroni, R., Bredas, J. L. & Beljonne, D. (2003) Journal of the American Chemical Society 125, 86258638.10.1021/ja034926tGoogle Scholar
12. de Boer, B., Stalmach, U., van Hutten, P. F., Melzer, C., Krasnikov, V. V. & Hadziioannou, G. (2001) Polymer 42, 90979109.10.1016/S0032-3861(01)00388-3Google Scholar
13. Haugeneder, A., Neges, M., Kallinger, C., Spirkl, W., Lemmer, U., Feldmann, J., Scherf, U., Harth, E., Gugel, A. & Mullen, K. (1999) Physical Review B 59, 15346–15351.10.1103/PhysRevB.59.15346Google Scholar
14. Markov, D. E., Amsterdam, E., Blom, P. W. M., Sieval, A. B. & Hummelen, J. C. (2005) Journal of Physical Chemistry A 109, 52665274.10.1021/jp0509663Google Scholar
15. Peumans, P., Uchida, S. & Forrest, S. R. (2003) Nature 425, 158162.10.1038/nature01949Google Scholar
16. Yang, X. N., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J. & Janssen, R. A. J. (2005) Nano Letters 5, 579583.10.1021/nl048120iGoogle Scholar
17. van Duren, J. K. J., Loos, J., Morrissey, F., Leewis, C. M., Kivits, K. P. H., van Ijzendoorn, L. J., Rispens, M. T., Hummelen, J. C. & Janssen, R. A. J. (2002) Advanced Functional Materials 12, 665669.10.1002/1616-3028(20021016)12:10<665::AID-ADFM665>3.0.CO;2-J3.0.CO;2-J>Google Scholar
18. Chen, L. X., Xiao, S. Q. & Yu, L. (2006) J. Phys. Chem. B 110, 11730–11738.Google Scholar
19. Grebner, D., Helbig, M. & Rentsch, S. (1995) Journal of Physical Chemistry 99, 16991–16998.10.1021/j100046a027Google Scholar
20. Gosztola, D., Niemczyk, M. P., Svec, W., Lukas, A. S. & Wasielewski, M. R. (2000) Journal of Physical Chemistry A 104, 65456551.Google Scholar
21. Angadi, M., Gosztola, D. & Wasielewski, M. R. (1999) Materials Science and Engineering B-Solid State Materials for Advanced Technology 63, 191194.10.1016/S0921-5107(99)00082-3Google Scholar
22. Bedard-Hearn, M. J., Larsen, R. E. & Schwartz, B. J. (2003) Journal of Physical Chemistry B 107, 14464–14475.10.1021/jp035846eGoogle Scholar
23. Freed, K. F. & Jortner, J. (1970) J. Chem. Phys 52, 62726291.10.1063/1.1672938Google Scholar
24. Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., Spiering, A. J. H., Janssen, R. A. J., Meijer, E. W., Herwig, P. & de Leeuw, D. M. (1999) Nature 401, 685688.10.1038/44359Google Scholar