Published online by Cambridge University Press: 10 February 2011
We have developed a novel method based upon pulsed laser deposition to produce nanocrystalline metal, semiconductor and magnetic material thin films and composites. The size of nanocrystals was controlled by interfacial energy, number of monolayers and substrate temperature. By incorporating a few monolayers of W during PLD, the grain size of copper nanocrystals was reduced from 160nm (Cu on Si (100)) to 4nm for a multilayer (Cu/W/Cu/W/Si (100)) thin film. The hardness increased with decreasing grain size up to a certain value (7nm in the case of copper) and then decreased below this value. While the former is consistent with Hall-Petch model, the latter involves a new model based upon grain boundary sliding.
We have used the same PLD approach to form nanocrystalline metal (Ni, Co, Fe embedded in α-A12O3 and MgO) and semiconductor (Si, Ge, ZnO, GaN embedded in AIN and α-A12O3) thin films. These nanocrystalline composites exhibit novel magnetic properties and novel optoelectronic properties with quantum confinement of electrons, holes and excitons in semiconductors. We review advanced PLD processing, detailed characterization, structureproperty correlations and potential applications of these materials.