Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-16T08:45:43.996Z Has data issue: false hasContentIssue false

A Novel Infrared Sige/Si Heterojunction Detector with an Ultrathin Phosphorus Barrier Grown by Atomic Layer Deposition

Published online by Cambridge University Press:  10 February 2011

R. Banisch
Affiliation:
Institute for Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt(Oder), Germany, [email protected]
B. Tilack
Affiliation:
Institute for Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt(Oder), Germany, [email protected]
M. Pierschel
Affiliation:
Institute for Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt(Oder), Germany, [email protected]
K. Pressel
Affiliation:
Institute for Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt(Oder), Germany, [email protected]
R. Barth
Affiliation:
Institute for Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt(Oder), Germany, [email protected]
D. Krüger
Affiliation:
Institute for Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt(Oder), Germany, [email protected]
G. Ritter
Affiliation:
Institute for Semiconductor Physics, P.O. Box 409, D-15204 Frankfurt(Oder), Germany, [email protected]
Get access

Abstract

In strained Sia−xGex heterojunction internal photoemission (HIP) photodiodes the spectral response can be tailored over a wide wavelength range by varying the Ge content. In this paper heavily in situ boron doped SiGe layers with 30% Ge were grown by low pressure rapid thermal chemical vapour deposition (LP(RT)CVD). The detectors exhibit a cut-off wavelength of 8.5 μm. A delta-like P peak, incorporated by atomic layer deposition technique, shifts the cut-off to shorter wavelengths. This shift is related to an increase of the barrier height at the SiGe/Si interface caused by the narrow n+-doped layer in agreement with device simulation. In this way the trade off between critical film thickness for high Ge content film growth and absorption depth for proper detector response can be overcome.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lin, T. L. and Maserjan, J., Appl. Phys. Lett. 57 (1990) 1422 Google Scholar
[2] Tsaur, B-Y., Chen, C. K., and Marino, S. A., IEEE Electron Dev. Lett. 12 (1991) 293 Google Scholar
[3] Banisch, R., Tillack, B., Presséi, K., Barth, R., and Erzgräber, H., E-MRS 1996 Spring Meeting, D/P40Google Scholar
[4] Tillack, B., Ritter, G., Krüger, D., Zaumseil, P., Morgenstern, G., and Glowatzki, K.-D., Mater. Science and Technology 11 (1995) 1060 Google Scholar
[5] Shannon, J. M., Appl. Phys. Lett. 25 (1974) 75 Google Scholar
[6] Konuma, K., Asano, Y., Masubuchi, K., Utsumi, H., Tohyama, S., Endo, T., Azuma, H., and Teranishi, N., IEEE Trans. Electron Devices 43 (1996) 282 Google Scholar
[7] Tillack, B., Zaumseil, P., Morgenstern, G., Krüger, D., and Ritter, G., Appl. Phys. Lett. 67 (1995) 1143 Google Scholar
[8] Bean, C. J., Proc. IEEE 80 (1992) 571 Google Scholar
[9] Tillack, B., Krüger, D., Gaworzewski, P., and Ritter, G., to be pubi, in Mater. Science and Eng.Google Scholar
[10] Gajewski, H., Langmach, H., Telschow, G. und Zacharias, K.: “Der 2D-Bauelementesimulator TOSCA”, Handbuch, Berlin 1986, 1993 Google Scholar
[11] Green, M. A., J. Appl. Phys. 67 (1990) 2944 Google Scholar