Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T19:22:40.305Z Has data issue: false hasContentIssue false

Novel Imprinting Techniques for Fabrication of Multilevel Flexible Electronics

Published online by Cambridge University Press:  02 February 2011

Daniël Turkenburg
Affiliation:
HOLST Center, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Henk Rendering
Affiliation:
TNO Science & Industry, De Rondom 1, 5600 HE Eindhoven, The Netherlands
Arjan Hovestad
Affiliation:
TNO Science & Industry, De Rondom 1, 5600 HE Eindhoven, The Netherlands
Niki Stroeks
Affiliation:
TNO Science & Industry, De Rondom 1, 5600 HE Eindhoven, The Netherlands
Pascale Maury
Affiliation:
ASML, Veldhoven, De Run 5601, 5504 DR Veldhoven, The Netherlands
Pieter Moonen
Affiliation:
University of Twente, Hallenweg 15, 5722 NB Enschede, The Netherlands
Jurriaan Huskens
Affiliation:
University of Twente, Hallenweg 15, 5722 NB Enschede, The Netherlands
Ionuţ Barbu
Affiliation:
HOLST Center, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Erwin Meinders
Affiliation:
HOLST Center, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Get access

Abstract

We report a novel method to selectively deposit materials from solution into imprinted micro-capillaries. Dewetting of the solvent just outside the capillaries is balanced to evaporation inside the capillaries. In this way conductive μ-wires can be self-assembled and self-aligned on flexible substrates opening the route to faster and cheaper plastic electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meinders, E. M. et al. , Proc. of SPIE, 6921, 2008, p69212F Google Scholar
2. Barbu, I., Ivan, M., Giesen, P., vd Moosdijk, M., Meinders, E. R., Proc. of SPIE, 7520, 2009, p75200A Google Scholar
3. Kim, H. J., Almanza-Workman, M., Chaiken, A., Jackson, W., Jeans, A., Kwon, O., Luo, H., Mei, P., Perlov, C., Taussig, C., Jeffrey, F., Braymen, S., Hauschildt, J., IMID/IDMC ’06 Digest, 2006, 38.1 Google Scholar
4. Dickey, M. D., Small, 2010, in pressGoogle Scholar
5. Noh, Y. Y., Zhao, N., Caironi, M. and Sirringhaus, H., Nature nano technology, 2, 2007, p784789 Google Scholar
6. Cassie, A. B. D. and Baxter, S., Trans. Faraday Soc., 40, 1944, p 546551 Google Scholar
7. Péter, M., Furthner, F., Deen, J., de Laat, W. J.M., Meinders, E. R., Thin Solid Films, 517, 2009, p30813086 Google Scholar
8. Péter, M., Furthner, F., Geuns, T.C.T., van der Putten, B., de Laat, W., Gelinck, G.H., Meinders, E.R., Proceedings OSC, 2008 Google Scholar
9. Handbook of chemistry and physics, 87th edition, Lide, D. R., 2006, Taylor and Francis Group, Boca Raton Google Scholar