Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:35:59.486Z Has data issue: false hasContentIssue false

A novel functionalization of AlGaN/GaN-pH-Sensors for DNA-sensors

Published online by Cambridge University Press:  31 January 2011

Stefanie Linkohr
Affiliation:
S. U. Schwarz
Affiliation:
Albert-Ludwigs-University of Freiburg, Department of Microsystems Engineering (IMTEK) 79108 Freiburg, Germany
S. Krischok
Affiliation:
Institute of Micro- and Nanotechnologies, Technical University Ilmenau, P.O. Box 100565, Germany
P. Lorenz
Affiliation:
Institute of Micro- and Nanotechnologies, Technical University Ilmenau, P.O. Box 100565, Germany
T. Nakamura
Affiliation:
Institute of Micro- and Nanotechnologies, Technical University Ilmenau, P.O. Box 100565, Germany
V. Polyakov
Affiliation:
AIST Tsukuba Central 1 Tsukuba, Ibaraki 305-8561, Japan
V. Cimalla
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastraße 72, 79108 Freiburg, Germany, [email protected]
C. Nebell
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastraße 72, 79108 Freiburg, Germany, [email protected]
O. Ambacher
Affiliation:
Fraunhofer Institute for Applied Solid State Physics, Tullastraße 72, 79108 Freiburg, Germany, [email protected]
Get access

Abstract

AlGaN/GaN pH sensitive devices were functionalized and passivated for the use as selective bio-sensors. For the passivation, a multilayer of SiO2 and SiNx is proposed, which stabilizes the pH-sensor, is biocompatible and has no negative impact on the following bio-functionalization. The functionalization of the GaN-surface was achieved by covalent bonding of 10-amino-dec-1-ene molecules by a photochemical process. After two different surface preparations islands of TFAAD are growing on the sensor surface by exposure with UV-light. In dependence on the surface pre-treatment and the illumination wavelength the first monolayer is completed after 3 h or 7 h exposure time dependent on the pre-treatment and illumination wavelength. Further exposure results in thicker films as a consequence of cross polymerization. The bonding to the sensor surface was analyzed by X-ray photoelectron spectroscopy, while the thickness of the functionalization was determined by atomic force microscopy scratching experiments. These functionalized devices based on the pH-sensitive AlGaN/GaN ISFET will establish a new family of adaptive, selective biomolecular sensors such as selective, reusable DNA sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ambacher, O., J. Phys. D: Appl. Phys. 31, 26532710 (1998).Google Scholar
2 Pearton, S.J., Zolper, J.C., Shul, R.J., Ren, F., J. Appl. Phys. 86, 178 (1999).Google Scholar
3 Jain, S.C., Willander, M., Narayan, J., Overstraeten, R. Van, J. Appl. Phys. 87, 9651006 (2000).Google Scholar
4 Stutzmann, M., Steinhoff, G., Eickhoff, M., Ambacher, O., Nebel, C.E., Schalwig, J., Neuberger, R., Müller, G., Diamond Relat. Mater. 11, 886891 (2002).Google Scholar
5 Eickhoff, M., Schalwig, J., Steinhoff, G., Weidemann, O., Görgens, L., Neuberger, R., Hermann, M., Baur, B., Müller, G., Ambacher, O., Stutzmann, M., Phys. Stat. Sol. (c), 19081918 (2003).Google Scholar
6 Ambacher, O., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Schaff, W.J., Eastman, L.F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., Hilsenbeck, J., J. Appl. Phys. 85, 32223233 (1999).Google Scholar
7 Ibbetson, J.P., Fini, P.T., Ness, K.D., DenBaars, S.P., Speck, J.S., Mishra, U.K., Appl. Phys. Lett. 77, 250252 (2000).Google Scholar
8 Ambacher, O., Eickhoff, M., Link, A., Hermann, M., Stutzmann, M., Bernardini, F., Fiorentini, V., Smorchkova, Y., Speck, J., Mishra, U., Schaff, W., Tilak, V., Eastman, L.F., Phys. Stat. Sol. (c), 18781907 (2003).Google Scholar
9 Neuberger, R., Müller, G., Ambacher, O., Stutzmann, M., Phys. Stat. Sol. (a) 185, 8589 (2001).Google Scholar
10 Steinhoff, G., Hermann, M., Schaff, W.J., Eastman, L.F., Stutzmann, M., Eickhoff, M., Appl. Phys. Lett. 83, 177179 (2003).Google Scholar
11 Bayer, M., Uhl, C., Vogl, P., J. Appl. Phys. 97 (2005).Google Scholar
12 Kang, B.S., Ren, F., Wang, L., Lofton, C., Weihong, W. Tan, Pearton, S.J., Dabiran, A., Osinsky, A., Chow, P.P., Appl.Phys. Lett. 87 (2005).Google Scholar
13 Steinhoff, G., Baur, B., Wrobel, G., Ingebrandt, S., Offenhäusser, A., Appl. Phys. Lett. 86 (2005).Google Scholar
14 Alifragis, Y., Georgakilas, A., Konstantinidis, G., Iliopoulos, E., Kostopoulos, A., Chaniotakis, N.A., Appl. Phys. Lett. 87, (2005).Google Scholar
15 Kim, H., Colavita, P.E., Metz, K.M., Nichols, B.M., Sun, B., Uhlrich, J., Wang, X., Kuech, T.F., Hamers, R.J., LANGMUIR 22 (19), 81218126 (2006)Google Scholar
16 Strother, T., Hamers, R.J., Smith, L.M., Nucleic Acids Research, 28, 35353541 (2000).Google Scholar
17 King, S.W., Barnak, J.P., Bremser, M.D., Tracy, K.M., Ronning, C., Davis, R.F., Nemanich, R.J.., J. Appl. Phys., 84, 52485260 (1998).Google Scholar
18 Hu, C.L., Li, J.Q., Chen, Y., Wang, W.F., Journal of Physical Chemistry C, 112(43), 1693216937 (2008).Google Scholar
19 Yang, N., Uetsuka, H., Watanabe, H., Nakamura, T., Nebel, C.E. Chemistry of Materials 19 (2007) 28522859 Google Scholar