Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T10:46:40.420Z Has data issue: false hasContentIssue false

Normal-State Infrared Anisotropy of Polycrystalline La1.85Sr0.15CuO4-y

Published online by Cambridge University Press:  28 February 2011

G. L. Doll
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
J. Steinbeck
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
M. S. Dresselhaus
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
G. Dresselhaus
Affiliation:
National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
A. J. Strauss
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173
H. J. Zeiger
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173
G. Phillips
Affiliation:
Department of Physics, University of Lowell, Lowell, MA 01854
J. Waldman
Affiliation:
Department of Physics, University of Lowell, Lowell, MA 01854
Get access

Abstract

By examining the reflectance spectra of polycrystalline La1.85Sr0.15CuO4-y and La2NiO4-y in relation to the results of ir studies on single-crystal La2NiO4-y, we have determined the normal-state (room temperature) optical anisotropy of La1.85Sr0.15CuO4-y in the frequency range 40 cm-1 to 4800 cm-1. Vibrational and electronic properties corresponding to this anisotropy are examined, and a method is presented for extracting the optical properties of the superconducting state of La1.85Sr0.15CuO4-y.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doll, G.L., Steinbeck, J., Dresselhaus, G., Dresselhaus, M.S., Strauss, A.J. and Zeiger, H.J., Phys. Rev. B (in press).Google Scholar
2. Bassat, J. -M., Odier, P. and Gervais, F., Phys. Rev. B 35, 7126 (1987).Google Scholar
3. Alp, E.E., Shenoy, G.K., Hicks, D.G., Capone, D.W. II, Soderholm, L., Schuttler, H.-B., Guo, J., Ellis, D.E., Montano, P.A. and Ramanathan, M., Phys. Rev. B 35, 7199 (1987).Google Scholar
4. Carr, G. L., Perkowitz, S. and Tanner, D. B. in Infrared and Millimeter Waves, edited by Button, K. J. (Academic, New York, 1985), Vol. 13, p. 171.Google Scholar
5. Gervais, F., Odier, P. and Nigara, Y., Solid State Commun. 56, 371 (1985).Google Scholar
6. Bonn, D. A., Greedan, J. E., Stager, C. V., Timusk, T., Doss, M. G., Herr, S. L., Kamarás, K., Porter, C. D., Tanner, D. B., Tarascón, J. M., McKinnon, W. R. and Greene, L. H., Phys. Rev. B 35, 8843 (1987).Google Scholar
Bonn, D. A., Greedan, J. E., Stager, C. V. and Timusk, T., Solid State Commun. 62, 383 (1987).Google Scholar
7. Gervais, F. in Infrared and Millimeter Waves, edited by Button, K. J. (Academic, New York, 1983), Vol. 8, p. 306.Google Scholar
8. Mattheiss, L.F., Phys. Rev. Lett. 58, 1029 (1987);Google Scholar
Yu, J., Freeman, A.J., and Xu, J.-H., Phys. Rev. Lett. 58, 1035 (1987);Google Scholar
Weber, W., Phys. Rev. Lett. 58, 1371 (1987).Google Scholar
9. The O(I) and O(II) notation refers to oxygen sites in and out of the Cu-0 planes. See e.g. Boyce, J.B., Bridges, F., Claeson, T., Geballe, T.H., Chu, C.W. and Tarascón, J.M., Phys. Rev. B 35, 7203 (1987).Google Scholar
10. Fu, C.L. and Freeman, A.J., Phys. Rev. B 35, 8861 (1987).Google Scholar
11. Eklund, P.C., private communication. Google Scholar