Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T13:58:45.744Z Has data issue: false hasContentIssue false

Nonvolatile Two-Terminal Molecular Memory

Published online by Cambridge University Press:  01 February 2011

Jason Snodgrass
Affiliation:
[email protected], University of Nebraska Omaha, Omaha, NE, 68182-0226, United States
Glen Kennedy
Affiliation:
[email protected], University of Nebraska Omaha, Omaha, NE, 68182-0226, United States
Wai-Ning Mei
Affiliation:
[email protected], University of Nebraska Omaha, Omaha, NE, 68182-0226, United States
Renat Sabirianov
Affiliation:
[email protected], University of Nebraska Omaha, Omaha, NE, 68182-0226, United States
Get access

Abstract

We propose a nonvolatile two-terminal memory with two resistance states based on the molecular tunnel junctions. This tunnel junction is composed of one or few monolayers of polar molecules sandwiched between two electrodes made of materials with different screening length. As a prototype model system we study rare earth endohedral metallofullerene molecule with reversible dipole moment sandwiched by metal and semiconducting electrodes forming a double barrier junction. We use the Thomas-Fermi model to calculate the potential profile across the device. Calculated tunneling conductance through the proposed structure changes by order of magnitude upon the reversal of the dipole orientation (due to the applied voltage). This effect originates from the difference of potential profile seen by tunneling electrons for two opposite dipole orientations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baikalov, A., Wang, Y. Q., Shen, B., Lorenz, B., Tsui, S., Sun, Y. Y., Xue, Y. Y., and Chu, C. W., Appl. Phys. Lett. 83, 957 (2003).10.1063/1.1590741Google Scholar
2. Weiss, P., Science News 167, 363 (2005).10.2307/4016413Google Scholar
3. Contreras, J. Rodríguez, Kohlstedt, H., Poppe, U., Waser, R., Buchal, C., and Pertsev, N. A., Appl. Phys. Lett. 83, 4595 (2003).Google Scholar
4. Zhuravlev, M. Ye., Sabirianov, R. F., Jaswal, S. S., and Tsymbal, E. Y., Phys. Rev. Lett. 94, 246802 (2005).Google Scholar
5. Yasutake, Y., Shi, Z., Okazaki, T., Shinohara, H., and Majima, Y., NanoLetters 5, 1057 (2005).Google Scholar
6. Stewart, D. R., Ohlberg, D. A. A., Beck, P. A., Chen, Y., and Williams, R. Stanley, Jeppesen, J. O., Nielsen, K. A., and Stoddart, J. Fraser, NanoLetters 4, 133 (2004).10.1021/nl034795uGoogle Scholar
7. Lu, J., Mei, W.N., Gao, Y., Zeng, X., Jing, M.,Li, G., Sabirianov, R., Gao, Z., You, L., Xu, J., Yu, D., Ye, H., Chemical Physics Letters 425, 8284 (2006).Google Scholar
8. Ashcroft, N.W. and Mermin, N. D., Solid State Physics(Saunders College Publishing, New York, 1976), p. 340.Google Scholar