Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:10:17.815Z Has data issue: false hasContentIssue false

Nonstoichiometry and Defect Mechanism in Intermetallics with L12-Structure

Published online by Cambridge University Press:  21 March 2011

Herbert Ipser
Affiliation:
Inst. f. Anorganische Chemie, Universität Wien, Währingerstraβe 42, A-1090 Wien, Austria
Olga P. Semenova
Affiliation:
Inst. f. Anorganische Chemie, Universität Wien, Währingerstraβe 42, A-1090 Wien, Austria
Regina Krachler
Affiliation:
Inst. f. Anorganische Chemie, Universität Wien, Währingerstraβe 42, A-1090 Wien, Austria
Agnes Schweitzer
Affiliation:
Inst. f. Anorganische Chemie, Universität Wien, Währingerstraβe 42, A-1090 Wien, Austria
Wenxia Yuan
Affiliation:
Dept. of Physical Chemistry, Univ. of Science and Technology Beijing, P.R. China 100083
Ming Peng
Affiliation:
Dept. of Physical Chemistry, Univ. of Science and Technology Beijing, P.R. China 100083
Zhiyu Qiao
Affiliation:
Dept. of Physical Chemistry, Univ. of Science and Technology Beijing, P.R. China 100083
Get access

Abstract

A statistical-thermodynamic model was derived which allows to describe thermodynamic activities in intermetallic compounds with L12-structure as a function of composition and temperature. The energies of formation of the four types of point defects (anti-structure atoms and vacancies on both sublattices) were used as adjustable parameters. The model was applied to the three compounds Ni3Al, Ni3Ga, and Pt3Ga, and it permitted to estimate for the first time the defect formation energies for Ni3Ga and to provide initial estimates for Pt3Ga.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donachie, M.J., in: Superalloys Source Book, ed. Donachie, M.J. (ASM International, 1984), p. 3.Google Scholar
2. in: Superalloys 1988, ed. Duhl, D.N., Maurer, G., Antolovich, S., Lund, L., and Reichmann, S. (The Metallurgical Society, Inc., 1988).Google Scholar
3. in: Intermetallic Compounds - Principles and Practice, Vol. 1 and 2, ed. Westbrook, J.M. and Fleischer, R.S. (John Wiley, 1995).Google Scholar
4. Krachler, R., Ipser, H., and Komarek, K. L., J. Phys. Chem. Solids, 50, 1127 (1989); 51, 1239 (1990).Google Scholar
5. Ipser, H. and Krachler, R., in: Design Fundamentals of High Temperature Composites, Intermetallics, and Metals-Ceramic Systems, ed. Lin, R.Y., Chang, Y.A., Reddy, R.G., and Liu, C.T. (The Minerals, Metals, and Materials Society, 1996), p. 187.Google Scholar
6. Krachler, R. and Ipser, H., Intermetallics, 7, 141 (1999).10.1016/S0966-9795(98)00023-5Google Scholar
7. Krachler, R., Semenova, O. P., and Ipser, H., Phys. Stat. Sol. (b), 216, 943 (1999).Google Scholar
8. Steiner, and Komarek, K.L., Trans. Met. Soc. AIME, 230, 786 (1964).Google Scholar
9. Hilpert, K., Miller, M., Gerads, H., and Nickel, H., Ber. Bunsenges. Phys. Chem., 94, 40 (1990).10.1002/bbpc.19900940109Google Scholar
10. Debiaggi, S.B., Decorte, P.M., and Monti, A.M., Phys. Stat. Sol. (b), 195, 37 (1996).Google Scholar
11. Gao, F., Bacon, D.J., and Ackland, G.J., Phil. Mag. A, 67, 275 (1993).Google Scholar
12. Foiles, S.M. and Daw, M.S., J. Mater. Res., 2, 5 (1987).10.1557/JMR.1987.0005Google Scholar
13. Fu, C.L. and Painter, G.S., Acta Mater., 45, 481 (1997).Google Scholar
14. Sun, J. and Lin, D., Acta Metall. Mater., 42, 195 (1994).Google Scholar
15. Schweiger, H., Moroni, E., Wolf, W., Püschl, W., Pfeiler, W., and Podloucky, R., Nat. Res. Soc. Proc., 552, KK5.151 (1999).10.1557/PROC-552-KK5.15.1Google Scholar
16. Katayama, I., Igi, S., and Kozuka, Z., Trans JIM, 15, 447 (1974).Google Scholar
17. Katayama, I., Makino, T., and Iida, T., High Temp. Mater. Sci., 34, 127 (1995).Google Scholar
18. Yuan, W., Diwald, O., Mikula, A., and Ipser, H., Z. Metallkde., 91, 448 (2000).Google Scholar
19. Pratt, J.N. and Bird, J. M., J. Phase Equil., 14, 465 (1993).Google Scholar
20. Kushida, A., Ikeda, T., Numakura, H., and Koiwa, M., J. Japan Inst. Metals, 64, 202 (2000).Google Scholar
21. Wolf, W., Schweiger, H., and Podloucky, R., ongoing research, University of Vienna, Austria (2000).Google Scholar
22. Wagner, C. and Schottky, W., Z. Physik. Chem., B11, 163 (1931).Google Scholar