Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T04:03:00.418Z Has data issue: false hasContentIssue false

Nonlinear Dielectric Thin Films For Active and Electrically Tunable Microwave Devices

Published online by Cambridge University Press:  15 February 2011

A. T. Findikoglu
Affiliation:
Superconductivity Technology Center, [email protected]
Q. X. Jia
Affiliation:
Superconductivity Technology Center, [email protected]
D. W. Reagor
Affiliation:
Electronic Materials and Device Research, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545.
X. D. Wu
Affiliation:
Superconductivity Technology Center, [email protected]
Get access

Abstract

We have prepared electrically tunable and active microwave devices incorporating (superconducting YBa2Cu3O7-x)/(nonlinear dielectric SrTiO3) or (normal metal Au)/(nonlinear dielectric Sr0.5Ba0.5TiO3) bilayers. The dielectric layer thickness for these samples varied between 0.5 μm and 2 μm. The top electrode layer for each sample was patterned into a coplanar waveguide device structure. We have configured these devices as voltage-tunable resonators, voltage-tunable phase shifters, voltage-tunable mixers, and voltage-tunable filters. Under dc voltage bias, these prototype devices have exhibited up to 30% resonant frequency modulation, about 1°/mm-GHz phase shift, more than 40 dB change in mixed microwave power, and finetunable symmetric filter profile with less than 2% bandwidth and more than 15% adaptive range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vendik, O. G., Ter-Martirosyan, L. T., Dedyk, A. I., Karmanenko, S. F., and Chakalov, R. A., Ferroelectrics 144, 33 (1993).Google Scholar
2. Jackson, C. M., Kobayashi, J. H., Durand, D., and Silver, A. H., Microwave J. 12, 72 (1992).Google Scholar
3. Satyen Das, Microwaves and RF 12, 137 (1994).Google Scholar
4. Varadan, V. K., Ghodgaonkar, D. K., Varadan, V. V., Kelly, J. F., and Glikerdas, P., Microwave J. 1, 116 (1992).Google Scholar
5. Vendik, O. G., Ferroelectrics 12, 85 (1976).Google Scholar
6. Vendik, I. B. and Ter-Martirosyan, L. T., Technical Physics 38, 12 (1993).Google Scholar
7. Venkatesan, T., Nazar, L., Wu, X. D., and Inam, A., Solid St. Technology 32, 143 (1989).Google Scholar
8. Neville, R. C., Hoeneisen, B., and Mead, C. A., J. Appl. Phys. 43, 2124 (1972).Google Scholar
9. Findikoglu, A. T., Jia, Q. X., Reagor, D. W., Campbell, I. H., Mombourquette, C. B., McMurry, D., and Wu, X. D., Appl. Phys. Lett. 66, 3674 (1995).Google Scholar
10. Findikoglu, A. T., Jia, Q. X., Reagor, D. W., and Wu, X. D., Microw. Opt. Techn. Lett. 9, 306 (1995).Google Scholar
11. Findikoglu, A. T., Jia, Q. X., Reagor, D. W., and Wu, X. D., Electron. Lett. 31, 1814 (1995).Google Scholar
12. Findikoglu, A. T., Jia, Q. X., Wu, X. D., Chen, G. J., Venkatesan, T., and Reagor, D.W., (unpublished).Google Scholar