Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T03:07:34.274Z Has data issue: false hasContentIssue false

Nonideality Effects on the Ion Exchange Behavior of the Zeolite Mineral Clinoptilolite

Published online by Cambridge University Press:  28 February 2011

Roberto T. Pabalan*
Affiliation:
Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78228-0510, U.S.A.
Get access

Abstract

The presence of laterally-extensive zones of zeolitized tuff underlying the proposed high-level nuclear waste repository at Yucca Mt., Nevada, has focused attention on the potential role of zeolite minerals, particularly clinoptilolite, in sorbing radionuclides and thereby retarding their migration. Ion exchange between zeolites and aqueous solutions depends on factors including compositions of the aqueous and zeolite phases and solution concentration. In addition, the thermodynamic stability of zeolite minerals and their susceptibility to diagenetic alteration also depend on aqueous and solid phase compositions. Therefore, spatial variations in zeolite compositions which have been observed at Yucca Mt., as well as natural or repository-induced changes in groundwater chemistry, may result in variations in the effectiveness of the zeolite minerals as retardation agents.

Ion exchange experiments were conducted to obtain isotherm data and to evaluate the use of thermodynamic models in describing and predicting the solid solution and ion exchange properties of clinoptilolite. The experimental data were interpreted using excess Gibbs energy models for the aqueous solution and zeolite phases to account for nonideality in the system. The results indicate that the thermodynamic models allow predictions of clinoptilolite ion exchange behavior at ionic strengths and relative concentrations for which data are absent, and provide a foundation for the interpretation of ion exchange equilibria in multicomponent geochemical systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Daniels, W.R., Wolfsberg, K., Rundberg, R.S., Ogard, A.E., Kerrisk, J.F., Duffy, C.J., Newton, T.W., Knight, S.D., Lawrence, F.O., Rundberg, V.L., Sykes, M., Thompson, G., Travis, B., Treher, E., Vidale, R., Walter, G., Aguilar, R., Cisneros, M., Maestas, S., Mitchell, A., Oliver, P., Oliver, P., Raybold, N., and Wanek, P., Summary Report on the Geochemistry of Yucca Mountain and Environs. LA-9328-MS, Los Alamos Nat. Lab., Los Alamos, NM (1982).CrossRefGoogle Scholar
2. Meyer, R.E., Arnold, W.D., Case, F.I., O’Kelley, G.D., and Land, J.F., Effects of Mineralogy on Sorption of Strontium and Cesium onto Calico Hills Tuff, NUREG/CR-5463 ORNL-6589, Oak Ridge Nat. Lab., Oak Ridge, TN (1987).Google Scholar
3. Broxton, D.E., Warren, R.G., Hagan, R.C., and Luedemann, G., Chemistry of Diagenetically Altered Tuffs at a Potential Nuclear Waste Repository. Yucca Mountain, Nve County. Nevada. LA-10802-MS, Los Alamos Nat. Lab., Los Alamos, NM (1986).CrossRefGoogle Scholar
4. Barrer, R.M., in Natural Zeolites: Occurrence. Properties. Use, edited by Sand, L.B. and Mumpton, F.A. (Pergamon Press, New York, 1978) p. 385.Google Scholar
5. Bowers, T.S. and Burns, R.G., Amer. Min. 75, 601 (1990).Google Scholar
6. Ames, L.L., Amer. Min. 49, 127 (1964); 49, 1099 (1964).Google Scholar
7. Semmens, M.J. and Seyfarth, M., in Natural Zeolites: Occurrence. Properties. Use (Pergamon Press, New York, 1978), p. 517.Google Scholar
8. Townsend, R.P. and Loizidou, M., Zeolites 4, 191 (1984).CrossRefGoogle Scholar
9. Cheleshev, M.F., Berenschtein, B.G., Berenschtein, T.A., Grebanova, H.K., and Martinova, H.C, Dokl. Akad. Nauk SSSR 210, 1110 (1973).Google Scholar
10. Jama, M.A. and Yucel, H., Sep. Sci. Technol. 24, 1393 (1990).Google Scholar
11. Breck, D.W.. Zeolite Molecular Sieves (Wiley, New York, 1976), p. 699.Google Scholar
12. Barrer, R.M. , R. M. and Klinowski, J., J. Chem. Soc, Faraday Trans. I 70, 2080 (1974).Google Scholar
13. Barrer, R.M., in Natural Zeolites: Occurrence. Properties. Use, edited by Sand, L.B. and Mumpton, F.A. (Pergamon Press, New York, 1978) p. 385.Google Scholar
14. Helfferich, F., Ion Exchange (McGraw-Hill, New York, 1962).Google Scholar
15. Dyer, A., Enamy, H. and Townsend, R.P., Sep. Sci. Technol. 16, 173 (1981).Google Scholar
16. Vanselow, A.P., Soil Sci. 33, 95 (1932).Google Scholar
17. Townsend, R.P., Pure Appl. Chem. 58, 1359 (1986).Google Scholar
18. Gaines, G.L. and Thomas, H.G., J. Chem. Phys. 21, 714 (1953).CrossRefGoogle Scholar
19. Sposito, G., Thermodynamics of Soil Solutions (Clarendon Press, Oxford, 1981).Google Scholar
20. Argersinger, W.J., Davidson, A.W. and Bonner, O.D., Trans. Kansas Acad. Sci. 53, 404 (1950).Google Scholar
21. Barrer, R.M. and Walker, A.J., Trans. Far. Soc. 60, 171 (1964).Google Scholar
22. Fletcher, P. and Townsend, R., J. Chem. Soc. Far. Trans. I 81, 1731 (1985).Google Scholar
23. Glueckauf, E., Nature 163, 414 (1949).CrossRefGoogle Scholar
24. Pitzer, K.S., J. Phys. Chem. 77, 268 (1973).CrossRefGoogle Scholar
25. Pitzer, K.S., Rev. Mineralogy 17, 97 (1987).Google Scholar
26. Scatchard, G., J. Amer. Chem. Soc. 90, 3124 (1968).Google Scholar
27. Guggenheim, E.A., Philos. Mag. 19, 588 (1935).Google Scholar
28. Grant, S.A. and Sparks, D.L., J. Phys. Chem. 93, 6265 (1989).Google Scholar
29. Ganguly, J. and Saxena, S.K., Mixtures and Mineral Reactions (Springer-Verlag, Berlin, 1987), p. 14.CrossRefGoogle Scholar
30. Townsend, R.P., Fletcher, P., and Loizidou, M., in Proceedings of the 6th International Zeolite Conf., edited by Olson, D. and Bisio, A. (Butterworths, U.K., 1984), p. 110.Google Scholar
31. Pabalan, R.T. and Murphy, W.M., Progress in Experimental Studies on the Thermodynamic and Ion Exchange Properties of Clinoptilolite. CNWRA-89-006, Center for Nuclear Waste Regulatory Analyses, San Antonio, TX 78228–0510 (1990).Google Scholar