Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:45:11.933Z Has data issue: false hasContentIssue false

Nmr Studies of Polymer Electrolytes

Published online by Cambridge University Press:  28 February 2011

S.G. Greenbaum
Affiliation:
Hunter College of CUNY, Department of Physics, New York, NY 10021 Weizmann Institute of Science, Department of Chemical Physics, Rehovot, Israel
Y.S. Pak
Affiliation:
Hunter College of CUNY, Department of Physics, New York, NY 10021
K.J. Adamic
Affiliation:
Hunter College of CUNY, Department of Physics, New York, NY 10021
M.C. Wintersgill
Affiliation:
U.S. Naval Academy, Department of Physics, Annapolis, MD 21402
J.J. Fontanella
Affiliation:
U.S. Naval Academy, Department of Physics, Annapolis, MD 21402
Get access

Abstract

The results of several investigations of solvent-free polymer electrolytes by nuclear magnetic resonance (NMR) spectroscopy conducted by the authors and other groups are reviewed. 23Na NMR spectra of a wide variety of amorphous polymer electrolytes are characteristic of the second-order quadrupole broadened central ± 1/2 transition with a distribution of quadrupole couplings. The temperature dependence of the linewidth is similar across a wide range of materials, and highlights the importance of polymer segmental motions above the glass transition temperature to ion mobility. Strong cation-anion interactions in poly(propylene oxide) complexes are indicated by measurements of mobile ion concentrations and, in some cases, the observation of salt precipitation at elevated temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wright, P.V., Br. Polym. J. 7, 319 (1975).Google Scholar
2. Armand, M.B., Ann. Rev. Mat. Sci. 16, 245 (1986).Google Scholar
3. Vincent, C.A., Prog. Solid State Chem. 12, 145 (1987).CrossRefGoogle Scholar
4. Polymer Electrolyte Reviews. vol, 1&2, edited by MacCallum, J.R. and Vincent, C.A. (Elsevier Applied Science, London and New York, 1987 and 1989).Google Scholar
5. Blonsky, P.M., Shriver, D.F., Austin, P., Allcock, H.R., J. Am. Chem. Soc. 106, 6854 (1984).Google Scholar
6. Bouridah, A., Dalard, F., Deroo, D., Cheradame, H. and LeNest, J.F., Solid State Ionics 233 (1985).Google Scholar
7. Booth, C., Nicholas, C.V. and Wilson, D.J., Reference 4, vol. 2, p.229 (1989).Google Scholar
8. Ballard, D.G.H., Cheshire, P., Mann, T.S. and Przeworski, J.E., Macromolecules 23, 1256 (1990).CrossRefGoogle Scholar
9. Chadwick, A.V., Reference 4, vol. 1, p. 275 (1987).Google Scholar
10. Andrews, K., Cole, M., Latham, R.J., Linford, R.G., Williams, H.M. and Dobson, R.R., Solid State Ionics 28/30, 929 (1988).Google Scholar
11. Dupon, R., Papke, B.L., Ratner, M.A., Whitmore, D. H. and Shriver, D.F., J. Am. Chem. Soc. 104, 6247 (1982).Google Scholar
12. Teeters, D. and Frech, R., Solid State Ionics 18/19, 271 (1986).Google Scholar
13. Kakihana, M., Schantz, S. and Torell, L.M., J. Chem. Phys. 92, 6271 (1990).Google Scholar
14. Richards, P. M., in Physics of Superionic Conductors, edited by Salamon, M.B. (Springer, Berlin, 1979), p. 141.CrossRefGoogle Scholar
15. Stejskal, E.O. and Tanner, J.E., J. Chem. Phys. 42, 288 (1965).Google Scholar
16. Abragam, A., The Principles of Nuclear Magnetism (Oxford University Press, 1961).Google Scholar
17. Slichter, C.P., Principles of Magnetic Resonance, 3rd ed. (Springer-Verlag, Berlin, 1990).Google Scholar
18. Fukushima, E. and Roeder, S.B., Experimental Pulse NMR. A Nuts and Bolts Approach (Addison-Wesley, Massachussetts, 1981).Google Scholar
19. Fyfe, C.A., Solid State NMR for Chemists (C.F.C. Press, Guelph, 1983).Google Scholar
20. Brinkmann, D., in Progress in Solid Electrolytes, edited by Wheat, T.A., Ahmad, A. and Kuriakose, A.K. (Canmet Ottawa, 1983), p. 1.Google Scholar
21. Cohen, M.H. and Reif, F., Solid State Phys. 5, 339 (1957).Google Scholar
22. Bloembergen, N., Purcell, E.M. and Pound, R.V., Phys. Rev. 73, 679 (1948).Google Scholar
23. Baram, A., Luz, Z. and Alexander, S., J. Chem. Phys. 58, 4558 (1973).Google Scholar
24. Vega, A., presented at the Bat-Sheva Workshop on New Developments and Applications in ESR and NMR Spectroscopy, Israel, 1990 (unpublished).Google Scholar
25. Berthier, C., Gorecki, W., Minier, M., Armand, M.B., Chabagno, J.M. and Rigaud, P., Solid State Ionics 11, 91 (1983).Google Scholar
26. Minier, M., Berthier, C. and Gorecki, W., J. Physique 45, 739 (1984).Google Scholar
27. Tanzella, F.L., Bailey, W., Frydrych, D., Farrington, G.C. and Story, H.S., Solid State Ionics 5, 681 (1981).CrossRefGoogle Scholar
28. Killis, A., LeNest, J.F., Gandini, AA., Cheradame, H. and Cohen-Addad, J.P., Polym. Bull. 6, 351 (1982).CrossRefGoogle Scholar
29. Adamic, K.J., Greenbaum, S.G., Abraham, K.M., Alamgir, M., Wintersgill, M.C. and Fontanella, J.J., Chem. of Mater., submitted.Google Scholar
30. Gordon, R.E., Strange, J.H. and Webber, J.B.W., J. Phys. E 11, 1051 (1978).Google Scholar
31. Mali, M., Roos, J. and Brinkmann, D., Proc. XXII'd Congress Ampere, Zurich, 1984, edited by Muller, K. A., Kind, R. and Roos, J. (University of Zurich).Google Scholar
32. Bhattacharja, S., Smoot, S.W. and Whitmore, D.H., Solid State Ionics 18/19, 306.(1986).CrossRefGoogle Scholar
33. Chadwick, A.V., Strange, J.H. and Worboys, M.R., Solid State Ionics 9/10, 1155 (1983).Google Scholar
34. Bruce, P.G., in Reference 4, vol.1, p. 237 (1987).Google Scholar
35. Spindler, R. and Shriver, D.F., J. Am Chem. Soc. 110, 3036 (1988).CrossRefGoogle Scholar
36. Stark, R.E., Pak, Y.S. and Greenbaum, S.G., Solid State Tonics 34, 275 (1989).Google Scholar
37. Greenbaum, S.G., Pak, Y.S., Adamic, K.J., Wintersgill, M.C., Fontanella, J.J., Beam, D.A., Mei, H.L. and Okamoto, Y., Mol. Cryst. and Liq. Cryst. 160, 347 (1988).Google Scholar
38. Pak, Y.S., Adamic, K.J., Greenbaum, S.G., Wintersgill, M.C., Fontanella, J.J. and Coughlin, C.S., Solid State Ionics, submitted.Google Scholar
39. Greenbaum, S.G., Adamic, K.J., Pak, Y.S., Wintersgill, M.C. and Fontanella, J.J., Solid State Ionics 28/30, 1042 (1988).CrossRefGoogle Scholar
40. Wintersgill, M.C., Fontanella, J.J., Pak, Y.S., Greenbaum, S.G., Al-Mudaris, A. and A. Chadwick, V., Polymer 30, 1123 (1989).Google Scholar
41. Greenbaum, S.G., Pak, Y.S., Wintersgill, M.C. and Fontanella, J.J., Solid State Ionics 31, 241 (1988).Google Scholar
42. Greenbaum, S.G., Adamic, K.J., Pak, Y.S., Wintersgill, M.C., Fontanella, J.J., Beam, D. A. and Andeen, C.G., Proc, of the Electrochemical Society Symposium on Electro-Ceramics and Solid State Ionics, Honolulu, 1987, vol. 88–3. edited by Tuller, H. (Electrochemical Society, Pennington, N.J., 1987), p. 211.Google Scholar
43. Wintersgill, M. C. and Fontanella, J.J., in Reference 4, vol.2, p. 43 (1989).Google Scholar