Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:49:12.413Z Has data issue: false hasContentIssue false

NH3-Plasma Treatment of Gaas Surface at High Temperature in Remote Plasma and Direct Plasma Reactor

Published online by Cambridge University Press:  21 February 2011

Kyoung Wan Park
Affiliation:
Research Department, ETRI, Daejeon 305-606, Republic of Korea
Seong Jae Lee
Affiliation:
Research Department, ETRI, Daejeon 305-606, Republic of Korea
Mincheol Shin
Affiliation:
Research Department, ETRI, Daejeon 305-606, Republic of Korea
El-Hang Lee
Affiliation:
Research Department, ETRI, Daejeon 305-606, Republic of Korea
Get access

Abstract

NH3-plasma treatment has been used for passivation of native-oxide-contaminated GaAs surface. Ex situ band-gap photoluminescence(PL) measurement shows enhanced intensity for the treated surfaces in direct plasma. Auger electron spectroscopy(AES) shows that the treated surface contains nitrogen atoms but no arsenic atoms, which leads us to speculate that the graded GaN thin layer was formed on the surface. Long-term stability of the enhanced PL intensity is attributed to the formation of GaN on the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y., and Lindau, I., J. Vac. Sci. Technol. 16, 1422 (1979).Google Scholar
2 Woodall, J.M. and Freeouf, J.L., J. Vac. Sci. Technol. 19, 794 (1981).Google Scholar
3 Offsey, S.D., Woodall, J.M., Warren, A.C., Kirchner, P.D., Chappel, T.I., and Pettit, G.D., Appl. Phys. Lett. 48, 475 (1986).CrossRefGoogle Scholar
4 Sandroff, C.J., Nottenburg, R.N., Bishoff, J.C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).Google Scholar
5 Fan, J.F., Oigawa, H., and Nannichi, Y., Jpn. J. Appl. Phys. 27, L1331 (1988).Google Scholar
6 Contour, J.P., Massies, J., Saletes, A., Outrequin, M., Simondet, F., and Rochette, J.F., J. Vac. Sci. Technol. B5, 730 (1987).Google Scholar
7 Gottscho, R.A., Preppernau, B.L., Pearton, S.J., Emerson, A.B., and Giapis, K.P., J.Appl.Phys. 68, 440, (1990).Google Scholar
8 Callegari, A., Hoh, P.D., Buchanan, D.A., and Lacey, D., Appl.Phys.Lett. 54, 332 (1989).Google Scholar
9 Wu, C.Y. and Lin, M.S., J.Appl.Phys. 60, 2050 (1986).CrossRefGoogle Scholar
10 Fountain, G.G., Hattangady, S.V., Vitkavage, D.J., Rudder, R.A., and Markunas, R.J., Electron.Lett. 24, 1134 (1988)Google Scholar
11 Pankove, J.I., Berkeyheiser, J.E., Kilpartrick, S.J., and Magee, C.W., J. Electronic Materials , 359 (1983).Google Scholar
12 Viktorovitch, P.,Gendry, M., Krawczyk, S.K., Krafft, F., Abraham, P., Bekkaoui, A., and Monteil, Y., Appl.Phys.Lett. 58, 2387 (1991).Google Scholar
13 Lee, J.J. privite communicationGoogle Scholar
14 Paccagnella, A., Callegari, A., Latta, E., and Gasser, M., Appl.Phys.Lett. 55, 259 (1989).Google Scholar