Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:35:46.456Z Has data issue: false hasContentIssue false

New Routes To Nitrides: Synthesis Of A Highly Colored Lithium Tantalum Oxynitride

Published online by Cambridge University Press:  10 February 2011

Joel D. Houmes
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139
Hans-Conrad Zur Loye
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139
Get access

Abstract

The synthesis of a new lithium tantalum oxynitride is described. The compound, LiTaO3-3xN2x was synthesized by reacting LiTaO3 with anhydrous ammonia at temperatures ranging from 773 K to 1173 K. Depending on the reaction temperature the sample color changes from white to tan (773 K) to bright orange (973 K) to red (1123 K). The color appears to be the result of a p-d transition consistent with a charge transfer from localized nitrogen states to a band of predominately metal character. Electrical and magnetic measurements indicate that the material is a diamagnetic insulator.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gudat, A.; Kniep, R.; Rabenau, A.; Bronger, W. and Ruschewitz, U., J. Less-Common Met. 161, 3136 (1990).Google Scholar
[2] LaDuca, R.L. and Wolczanski, P.T., Inorg. Chem. 31, 13111313 (1992).Google Scholar
[3] Wiley, J.B. and Kaner, R.B., Science 255, 10931097 (1992).Google Scholar
[4] Zachwieja, U. and Jacobs, H., Eur. J. Solid State Inorg. Chem. 28, 10551062 (1991).Google Scholar
[5] Bem, D.S.; Gibson, C.P. and Loye, H.-C. zur, Chem. Mater. 5, 397399 (1993).Google Scholar
[6] Bem, D.S. and Loye, H.-C. zur, J. Solid State Chem. 104, 467 (1993).Google Scholar
[7] Houmes, J.; Bern, D. and Loye, H. zur, Mat. Res. Soc. Symp. Proc. Vol.327 1537ndash;64 (1994).Google Scholar
[8] Antoine, P.; Marchand, R.; Laurent, Y.; Michel, C. and Raveau, B., Mat. Res. Bull. 23,953–7 (1988).Google Scholar
[9] Bacher, P.; Antoine, P.; Marchand, R.; L'Haridon, P.; Laurent, Y. and Roult, G., J. Solid State Chem. 77, 6771 (1988).Google Scholar
[10] Grins, J.; Käll, P. and Svensson, G., J. Mater. Chem. 4, 1293–301 (1994).Google Scholar
[11] Grins, J. and Svensson, G., Mat. Res. Bull. 29, 801–9 (1994).Google Scholar
[12] Marchand, R.; Laurent, Y.; Guyader, J.; L'Haridon, P. and Verdier, P., J. Eur. Ceram. Soc. 8, 197213 (1991).Google Scholar
[13] Pors, F.; Marchand, R. and Laurent, Y., J. Solid State Chem. 107, 3942 (1993).Google Scholar
[14] Brauer, V.G.; Weidlein, J. and Strahle, J., Z. Anorg. Allge. Chem. 348, 298308 (1966).Google Scholar
[15] Sun, H. and Coey, J.M.D., J. Phys.-Condens. Matt. 2,6465 (1990).Google Scholar
[16] Elder, S.H.; DiSalvo, F.J. and Doerrer, L.H., Chem. Mater. 4, 928937 (1992).Google Scholar
[17] Herle, P. Subramanya; Hegde, M.S.; Vasanthacharya, N.Y.; Gopalakrishnan, J. and Subbanna, G.N., J. Solid State Chem. 112, 208–10 (1994).Google Scholar
[18] Houmes, J.D. and Loye, H.-C. zur, U.S. Patent PendingGoogle Scholar
[19] Brauer, G. and Weidlein, J.R., Angew. Chem. Int. Ed. Engl. 4, 241–2 (1965).Google Scholar
[20] Rez, I.S., Bull. Acad. Sci. USSR Phys. Ser. 33, 266–72 (1969).Google Scholar
[21] Strähle, J., Z. anorg. allg. Chem. 402, 4757 (1973).Google Scholar