Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:22:19.024Z Has data issue: false hasContentIssue false

New organic nonlinear optical materials: dithienylethylenes

Published online by Cambridge University Press:  15 March 2011

B. Sahraoui
Affiliation:
Laboratoire des Propriétés Optiques des Matériaux et Applications, UMR CNRS 6136 Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, FRANCE
K.J. Pluciński
Affiliation:
Military University of Technology, 00-908 Warsaw, POLAND
I. V. Kityk
Affiliation:
Inst. of Physics, WSP, Czestochowa, POLAND
B. Paci
Affiliation:
CEA (LETI-Technologies Avancées), DEIN/SPE, Gif sur Yvette, FRANCE
P. Baldeck
Affiliation:
Laboratoire de Spectrométrie Physique, Université J. Fourier, Saint Martin d'Hères, FRANCE
J-M. Nunzi
Affiliation:
CEA (LETI-Technologies Avancées), Gif sur Yvette, FRANCE
P. Frère
Affiliation:
Laboratoire d'Ingénierie Moléculaire et Matériaux Organiques, Université d'Angers, Angers, FRANCE
J. Roncali
Affiliation:
Laboratoire d'Ingénierie Moléculaire et Matériaux Organiques, Université d'Angers, Angers, FRANCE
Get access

Abstract

Measurements of the third-order susceptibilities of new dithienylethylenes in solutions using a degenerate four wave mixing technique at λ=532 nm in picosecond regime were made. From these measurements we deduced the second order hyperpolarizabilities. Optical power limiting properties of the mentioned compounds using nanosecond laser pulses in the visible range are evaluated. The dispersion of nonlinear absorption coefficients is obtained. The appropriate quantum chemical calculations are carried out.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kajzar, F. and Swalen, J. D., Organic Thin Films for Waveguiding Nonlinear Optic, Vol. 3, Gordon and Breach Publishers, 1996.Google Scholar
2. Zyss, J., ed., Molecular Nonlinear Optics: Materials, Physics and Devices, Acad. Press, Boston, 1994.Google Scholar
3. Ehrlich, J.E., Wu, X.-L., Lee, I.-Y.S., Rockel, Z.-Y.H., Marder, S. R., and Perry, J., Opt. Lett 22, 18431845 (1997).Google Scholar
4. Elandaloussi, E.H., Frère, P., Richomme, P., Orduna, J., Garin, J., Roncali, J.; J. Am. Chem. Soc. 119, 10774 (1997).Google Scholar
5. Sahraoui, B., Rivoire, G., Zaremba, J., Terkia-Derdra, N., Sallé, M., JOSA B15 N°2, 923927 (1998).Google Scholar
6. Sahraoui, B., Sylla, M., Bourdin, J. P., Rivoire, G., Zaremba, J., Nguyen, T.T. and Sallé, M., J. of Modern Optics 42, 2095 (1995).Google Scholar
7. Nguefack, C., Zabulon, T., Anemian, R., Andraud, C., Collet, A., Topcu, S., Baldeck, P., Nonlinear Optics, 21, 309 (1999).Google Scholar
8. Xu, P., Fuxi, C., Lu, A., Chin.Chem.Rep., 15, 125 (1998).Google Scholar
9. Kajzar, F. and Messier, J., Physical Review A 32, N°4, 23522359 (1985).Google Scholar
10. Boyd, R. W., Nonlinear Optics, Academic, Boston, 1992; R. Gvishi, J. Swiatkiewicz, P.N. Prasad, B.A. Reinhardt, and A.G. Dillard, Nonlinear Optics 12, 107 (1995).Google Scholar
11. Chollet, P-A., Dumarcher, V., Nunzi, J-M., Feneyrou, P., Baldeck, P., Nonlinear Optics 21, 299 (1999).Google Scholar
12. Pfeffer, N., Charra, F., and Nunzi, J.M., Opt. Lett. 16, 1987 (1991).Google Scholar
13. Delysse, S., Nunzi, J.M., Scala-Valero, C., Appl. Phys. B66, 439 (1998).Google Scholar
14. Charra, F., Fichou, D., Nunzi, J.M., Pfeffer, N., Chem. Phys Lett. 192, 566 (1992).Google Scholar
15. Kityk, I.V., Sahraoui, B., Nguyen, P.X., Rivoire, G., and Kasperczyk, J., Nonlinear Optics 18, 13 (1997).Google Scholar
16. Bachelet, G.C., Hamann, D.R., and Schluter, M., Phys Rev. B26, 4199 (1982).Google Scholar
17. Sahraoui, B., Kityk, I.V., Kasperczyk, J., Salle, M. and Nguyen, T.T., Opt. Comm. 176/4-6, 503 (2000)Google Scholar