Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:27:56.820Z Has data issue: false hasContentIssue false

A New Low Dielectric Constant Polymer Material (k < 2): Microstructure, Electrical Properties, and Mechanical Properties

Published online by Cambridge University Press:  10 February 2011

Yi-Pin Tsai
Affiliation:
Department of Materials Science and Engineering, UCLA, CA 90095
C. N. Liao
Affiliation:
Department of Materials Science and Engineering, UCLA, CA 90095
Yuhuan Xu
Affiliation:
Department of Materials Science and Engineering, UCLA, CA 90095
K. N. Tu
Affiliation:
Department of Materials Science and Engineering, UCLA, CA 90095
Bin Zhao
Affiliation:
Conexant Systems, Newport Beach, CA 92660
Q.-Z. Liu
Affiliation:
Conexant Systems, Newport Beach, CA 92660
Maureen Brongo
Affiliation:
Conexant Systems, Newport Beach, CA 92660
Get access

Abstract

A porous polymer material, which is made of a two-phase composite and contains 35% porosity with a pore size less than 50Å, is found to have a dielectric constant of 1.8. It absorbs almost no water. The electrical properties, such as capacitance and leakage current, do not change with time and temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mills, M. E., Dibbs, M., Martin, S.J. and Towensend, P.H., Dielectrics for ULSI Multilevel Interconnection Conference, p.269, Feb. 21–22, (1995).Google Scholar
2. Zhao, B., Wang, S.-Q., Anderson, S., Lam, R., Fiebig, M., Vasudev, P. K., and Seidel, T. E., Mat. Res. Soc. Symp. Proc., 427, 415 (1996).10.1557/PROC-427-415Google Scholar
3. Sullivan, J. P., Denison, D. R., Barbour, J. C., Newcomer, P. P, Apblett, C. A., Seager, C. H., and Baca, A. G., Mat. Res. Soc. Symp. Proc., 443, 149 (1997).10.1557/PROC-443-149Google Scholar
4. Endo, K., MRS Bulletin, 22, no. 10(Oct.), 55 (1997).10.1557/S0883769400034217Google Scholar
5. Jin, C. M., Luttmer, J. D., Smith, D. M., and Ramos, T. A., MRS Bulletin 22, no. 10 (Oct.), 39 (1997).10.1557/S0883769400034187Google Scholar
6. Ting, C. H. and Seidel, T. E., Mat. Res. Soc. Symp. Proc., 381, 3 (1995).10.1557/PROC-381-3Google Scholar
7. Hendricks, N. H., Mat. Res. Soc. Symp. Proc. 443, 3 (1997).10.1557/PROC-443-3Google Scholar
8. Vrtis, R. N., Heap, K. A., Burgoyne, W. F., and robeson, L. M., Mat, Res. Soc. Simp. Proc., 443, 171 (1997).10.1557/PROC-443-171Google Scholar
9. Kohl, A. T., Mimna, R., Shick, R., Rhodes, L., Wang, Z. L., and Kohl, P. A., Electrochemical and solid-state letters, 2 (2), 7779 (1999).10.1149/1.1390740Google Scholar
10. Miller, R. D., Hedrick, J. L., Yoon, D. Y., Cook, R. F., and Hummel, J. P., MRS bulletin, 22, no 10, 44 (1997).10.1557/S0883769400034199Google Scholar
11. Kingery, W. D., Browen, H. K., and Uhlmann, D. R., Introduction to ceramics ch. 18, John Wiley & Sons, New York, 1976, P. 948.Google Scholar