Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:24:03.647Z Has data issue: false hasContentIssue false

New High Resolution Liquid Crystal Electron Beam Resists

Published online by Cambridge University Press:  10 February 2011

A. P. G. Robinson
Affiliation:
Nanoscale Physics Research Laboratory, School of Physics and Astronomy, The University of Brimingham, Birmingham, UK, [email protected].
R. E. Palmer
Affiliation:
Nanoscale Physics Research Laboratory, School of Physics and Astronomy, The University of Brimingham, Birmingham, UK, [email protected].
T. Tada
Affiliation:
Joint Research Center for Atom Technology, NAIR, 1–1–4 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
T. Kanayamat
Affiliation:
Joint Research Center for Atom Technology, NAIR, 1–1–4 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
M. T. Allen
Affiliation:
School of Chemistry, The University of Birmingham, Birmingham, UK.
J. A. Preecel
Affiliation:
School of Chemistry, The University of Birmingham, Birmingham, UK.
K. D. M. Harris
Affiliation:
School of Chemistry, The University of Birmingham, Birmingham, UK.
Get access

Abstract

We report the development of a new family of electron beam resists based on liquid crystalline polysubstituted derivatives of triphenylene. These new resists show excellent performance in terms of both high resolution and high durability to plasma etching. Films of the derivatives have been produced in a controlled manner via room temperature spin coating on hydrogen terminated silicon substrates. The dissolution behaviour of the derivatives in various organic solvents was altered by exposure to a 20 keV electron beam. The solubility of the derivative hexapentyloxytriphenylene, in polar solvents, was substantially increased by electron doses greater than ∼ 3 × 10-4 C/cm2 (positive tone behaviour). Doses greater than ∼ 2.5 × 10-3 C/cm2 led to negative tone behaviour in both polar and non-polar solvents. Other derivatives also demonstrated a reduction in their dissolution rate for doses between ∼ 1 × 10-3 and ∼ 7 × 10-3 C/cm2. The derivative sensitivity was found to be roughly proportional to the molecular mass. Negative tone patterns were found to have an etch durability ∼ 70 % greater than that of a conventional novolac based negative tone resist (SAL601). The performance of these new resists has been demonstrated by the definition of line and space patterns with a resolution of ∼ 14 nm, whilst structures with an aspect ratio of.∼ 50 to 1 were etched into the silicon substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Fabrizio, E. Di, Grella, L., Baciocchi, M., Gentili, M., Ascoli, C., Cappella, B., Frediani, C. and Morales, P., J. Vac. Sci. Technol. B, 15, 2892 (1997).Google Scholar
[2]Shoji, H., Nakata, Y., Mukai, K., Sugiyama, Y., Sugawara, M., Yokoyama, N. and Ishikawa, H., Appl. Phys. Lett., 71, 193 (1997).Google Scholar
[3]Tang, Y., Ni, W.-X., Torres, C.M. Sotomayor and Hansson, G.V., Electronics Letters, 31, 1385 (1995).Google Scholar
[4]Smith, R.A. and Ahmed, H., Appl. Phys. Lett., 71, 3838 (1997).Google Scholar
[5]Ishikuro, H. and Hiramoto, T., Appl. Phys. Lett, 71, 3691 (1997).Google Scholar
[6]Peckerar, M.C., Perkins, F.K., Dobisz, E.A. and Glembocki, O.J., Handbook of Microlithography, Micromachining and Microfabrication Vol. 1, Rai-Choudhury, P., ed., (IEE, London, 1997), p. 686.Google Scholar
[7]Rogers, J.A., Paul, K.E., Jackman, R.J. and Whitesides, G.M., Appl. Phys. Lett., 70, 2658 (1997).Google Scholar
[8]McCord, M.A. and Rooks, M.J., Handbook of Microlithography, Micromachining and Microfabrication Vol. I, Rai-Choudhury, P., ed., (IEE, London, 1997), Ch. 2 p. 139–.Google Scholar
[9]Namastu, H., Kurihara, K., Nagase, M. and Makino, T., Appl. Phys. Lett., 70, 619 (1997).Google Scholar
[10]Yoshiiwa, M., Kageyama, H., Shirota, Y., Wakaya, F., Gamo, K. and Takai, M., Appl. Phys. Lett., 69, 2605 (1996).Google Scholar
[11]Yamaguchi, T., Namatsu, H., Nagase, M., Yamazaki, K. and Kurihara, K., Appl. Phys. Lett., 71, 2388 (1997).Google Scholar
[12]Fujita, J., Ohnishi, Y., Ochiai, Y. and Matsui, S., Appl. Phys. Lett., 68, 1297 (1996).Google Scholar
[13]Manako, S., Fujita, J., Ochiai, Y., Nomura, E., Matsui, S., Jpn. J. Appl. Phys., 36, 7773 (1997).Google Scholar
[14]Fujita, J., Watanabe, H., Ochiai, Y., Manako, S., Tsai, J.S. and Matsui, S., Appl. Phys. Lett., 66, 3064 (1995).Google Scholar
[15]Tada, T. and Kanayama, T., Jpn. J. Appl. Phys., 35, L63 (1996).Google Scholar
[16]Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T. and Preece, J.A., Appl. Phys. Lett., 72, 1302 (1998).Google Scholar
[17]Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Preece, J.A., Philp, D., Jonas, U. and Deiderich, F., Chem. Phys. Lett., 289, 586 (1998).Google Scholar
[18]Lercel, M.J., Craighead, H.G., Parikh, A.N., Seshadri, K. and Allara, D.L., Appl. Phys. Lett., 68, 1504 (1996).Google Scholar
[19]Whelan, C.S., Lercel, M.J., Craighead, H.G., Seshadri, K. and Allara, D.L., Appl. Phys. Lett., 69, 4245 (1996).Google Scholar
[20]Chen, W. and Ahmed, H., Appl. Phys. Lett., 62, 1499 (1993).Google Scholar
[21]Chen, W. and Ahmed, H., Appl. Phys. Lett., 63, 1116 (1993).Google Scholar
[22]Cumming, D.R.S., Thoms, S., Beaumont, S.P. and Weaver, J.M.R., Appl. Phys. Lett., 68, 322 (1996).Google Scholar
[23]Robinson, A.P.G., Palmer, R.E., Tada, T., Kanayama, T., Allen, M.T., Preece, J.A. and Harris, K.D.M, J. Phys. D., 32, L75 (1999).Google Scholar
[24]Boden, N., Borner, R.C., Bushby, R.J., Cammidge, A.N. and Jesudason, M.V., Liquid Crystals, 15, 851 (1993).Google Scholar
[25]Allen, M. T., Preece, J.A. and Harris, K.D.M, Liquid Crystals, (In Press).Google Scholar
[26]Manako, S., Fujita, J- I., Ochiai, Y., Nomura, E. and Matsui, S., Jpn. J. Appl. Phys., 36, 7773 (1997).Google Scholar
[27]Tada, T. and Kanayama, T., J. Vac. Sci. Technol. B, 13, 2801 (1995).Google Scholar
[28] The contrast is equal to (log10(D2/D1 )-) where D2 and D1 are the doses at which the extrapolation of the linear section of the rising response curve intersects with the 100% and 0% levels for film retention, respectively.Google Scholar