Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T13:25:19.087Z Has data issue: false hasContentIssue false

New Ferromagnetic Nitrides, CaN and SrN, and their “Recipe”

Published online by Cambridge University Press:  26 February 2011

Masaaki Geshi
Affiliation:
[email protected], Osaka University, Engineering Science, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
Koichi Kusakabe
Affiliation:
[email protected], Osaka University, Engineering Science, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
Hitose Nagara
Affiliation:
[email protected], Osaka University, Engineering Science, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
Naoshi Suzuki
Affiliation:
[email protected], Osaka University, Engineering Science, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
Get access

Abstract

We have designed new materials, CaN and SrN in a rock-salt structure (RS). They are ferromagnetic nitrides. Their ferromagnetic states are quite stable. Our calculations for the formation energy and first-principles MD simulations suggested that RS-CaN is at least metastable and stable in normal condition. Based on our results we have proposed the synthesis process of RS-CaN. Our proposed process is (1) heat up α-Ca3N2 until it is transformed into β-Ca3N2, (2) compress it above 50 GPa until 2Ca3N2 →2CaN+Ca reaction occurs, (3) cool down them to room temperature and (4) decompress them into an ambient pressure. We consider that this high pressure and high temperature synthesis is one of the hopeful method to synthesize new materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H. K., and Hemley, R. J., Nat. Mater. 3, 294 (2004).Google Scholar
2. Crowhurst, J. C., Goncharov, A. F., Sadigh, B., Evans, C. L., Morral, P. G., Ferreira, J. L., and Nelson, A. J., Science 311, 1275 (2006).Google Scholar
3. Ono, S., Kikegawa, T. and Oihishi, Y., Solid State Commun. 133, 55 (2005).Google Scholar
4. Zerr, A., Fasel, C., Miehe, G., and Riedel, R., Nat. Mater. 2, 185(2003).Google Scholar
5. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
6. Shirai, M., Physica E 10, 143 (2001).Google Scholar
7. Akinaga, H., Manago, T., and Shirai, M., Jpn. J. Appl. Phys. 39, L1118(2000).Google Scholar
8. Galanakis, I., Dederichs, P. H., and Papanikolaou, N., Phys. Rev. B 66, 134428 (2002).Google Scholar
9. Xu, Y.-Q., Liu, B.-G, and Pettifor, D. G., Phys. Rev. B 66, 184435 (2002).Google Scholar
10. Pask, J. E., Yang, L. H., Fong, C. Y., Pickett, W. E., and Dag, S., Phys. Rev. B 66, 224420 (2003)Google Scholar
11. Xie, W.-H., Xu, Y.-Q., Liu, B.-G, and Pettifor, D. G., Phys. Rev. Lett. 91, 037204 (2003).Google Scholar
12. Xie, W.-H and Liu, B.-G, J. Phys.: Condens. Matter 15, 5085(2003).Google Scholar
13. Ming, Zhang, Haining, Hu, Guodong, Liu, Yuting, Cui, Zhuhong, Liu, Jianli, Wang, Guangheng, Wu, Xixiang, Zhang, Liqin, Yan, Heyan, Liu, Fanbin, Meng, Jingping, Qu and Yangxian, Li, J. Phys.: Condens. Matter 15, 5017 (2003).Google Scholar
14. Zhang, M., Hu, H., Liu, Z., Liu, G., Cui, Y., and Wu, G., J. Magn. Magn. Mater. 270,32, (2004).Google Scholar
15. Xie, W.-H and Liu, B.-G, J. Appl. Phys. 96,3559(2004).Google Scholar
16. Şaş?oğlu, E., Sandratskii, L. M., and Bruno, P., J. Appl. Phys. 98, 063523 (2005).Google Scholar
17. Kusakabe, K., Geshi, M., Tsukamoto, H., and Suzuki, N., J. Phys.: Condens. Matter 16 S5639 (2004).Google Scholar
18. Geshi, M., Kusakabe, K., and Suzuki, N., J. Phys.: Condens. Matter 16 S5701 (2004).Google Scholar
19. Geshi, M., Kusakabe, K., Tsukamoto, H., and Suzuki, N., The American Institute of Physics Conference Proceedings 772,327 (2005).Google Scholar
20. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77,3865 (1996).Google Scholar
21. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., and Luitz, J., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Univesität Wien, Austria) (2001).Google Scholar
22. Baroni, S., Corso, A. Dal, de Gironcoli, S., Giannozzi, P., Cavazzoni, C., Ballabio, G., Scandolo, S., Chiarotti, G., Focher, P., Pasquarello, A., Laasonen, K., Trave, A., Car, R., Marzari, N., Kokalj, A., http://www.pwscf.org/.Google Scholar
23. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990)Google Scholar
24. ASM International, Binary Alloy Phase DIAGRAMS, Second Edition version 1.0, ISBN: 0-87179-1.Google Scholar