Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T03:09:27.306Z Has data issue: false hasContentIssue false

New Approaches for Formation of Ultra-Thin PtSi Layers for Infrared Applications

Published online by Cambridge University Press:  10 February 2011

R. A. Donaton
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
S. Jin
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
H. Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
M. Zagrebnov
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Baert
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium INSYS, K. U. Leuven, B-3001 Leuven, Belgium
A. Vantomme
Affiliation:
Instituut voor Kern- en Stralingsfysika, K. U. Leuven, B-3001 Leuven, Belgium
G. Langouche
Affiliation:
Instituut voor Kern- en Stralingsfysika, K. U. Leuven, B-3001 Leuven, Belgium
Get access

Abstract

In this work we describe the formation of ultra-thin PtSi layers using sputtering for metal deposition and RTP for the silicidation. The problem associated with the controllability of deposition of ultra-thin metal layers can be circumvented by depositing a thick Pt layer followed by a 2-step RTP process with a selective etch step in between. Continuous and uniform 3 nm thick PtSi layers are formed with this technique. Moreover, in another approach similar to the previous one, but in which the first RTP step is omitted, a much smoother PtSi layer is formed. The importance of the interfacial Pt/Si layer formed during metal deposition is described. These processes are totally compatible with CMOS technologies, as shown below.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kosonocky, W. F., Proc. SPIE vol.869 “Technologies for Optoelectronics”, 90 (1987).Google Scholar
2 Pellegrini, P. W., Ludington, C. E., and Weeks, M. M., J. Appl. Phys. 67, 1417 (1990).Google Scholar
3 Crider, C. A., Poate, J. M., Rowe, J. E., and Sheng, T. T., J. Appl. Phys. 52, 2860 (1981).Google Scholar
4 Pant, A. K., Murarka, S. P., Shepard, C., and Lanford, W., J. Appl. Phys. 72, 1833 (1992).Google Scholar
5 Bender, H., Roussel, P., Kolodinski, S., Torres, A., Donaton, R. A., Maex, K., and Van der Sluis, P., Mat. Res. Soc. Symp. Proc. 402,449 (1996).Google Scholar
6 Donaton, R. A., Jin, S., Bender, H., Zagrebnov, M., Baert, K., Maex, K., Vantomme, A., and Langouche, G., Microelectronic Engineering 37/38, 507 (1997).Google Scholar
7 Crider, C. A., Poate, J. M., Rowe, J. E., and Sheng, T. T., J. Appl. Phys. 52, 2860 (1981).Google Scholar
8 Ogawa, s., Kouzaki, T., Yoshida, T., and.Sinclair, R., J. Appl. Phys. 70, 827 (1991).Google Scholar
9 Kuznetsov, A. Y., Khodos, I. I., Linnros, J., Mohadjeri, B., Monakhov, E. V., and Svensson, B. G., Mat. Res. Soc. Symp. Proc. 355,427 (1995).Google Scholar
10 Abelson, J. R., Kim, K. B., Mercer, D. E., Helms, C. R., Sinclair, R., and Sigmon, T. W., J. Appl. Phys. 63, 689 (1988).Google Scholar
11 Das, S. R., Sheergar, K., Xu, D.-X., and Naem, A., Thin Solid Films 253, 467 (1994).Google Scholar
12 Donaton, R. A., Bender, S. Jin.H., Conard, T., De Wolf, I., Maex, K., Vantomme, A., and Langouche, G. (unpublished).Google Scholar