Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T15:34:11.175Z Has data issue: false hasContentIssue false

Neutron Studies of the Iron-based Family of High Tc Magnetic Superconductors

Published online by Cambridge University Press:  01 February 2011

Jeffrey W. Lynn*
Affiliation:
[email protected]@comcast.net, NIST, NIST Center for Neutron Research, Gaithersburg, Maryland, United States
Get access

Abstract

We briefly review recent neutron scattering investigations carried out at the NIST Center for Neutron Research on the crystal structures, magnetic structures, and spin dynamics of the iron-based ROFe(As,P) (R=La, Ce, Pr, Nd), and (Ba,Sr,Ca)Fe2As2 systems. All the undoped materials exhibit universal behavior, where a tetragonal-to-orthorhombic structural transition occurs between ˜100−220 K, below which the systems become antiferromagnets. The magnetic structure within the a-b plane consists of chains of parallel Fe spins that are coupled antiferromagnetically in the orthogonal direction, with an ordered moment typically less than one Bohr magneton. Hence these are itinerant electron magnets, with a spin structure that is consistent with Fermi-surface nesting and a spin wave bandwidth ˜200 meV. The rare-earth moments order antiferromagnetically at low T like ‘conventional’ magnetic-superconductors. With doping, the structural and magnetic transitions are suppressed in favor of superconductivity, with superconducting transition temperatures up to 56 K, while the Ce crystal field linewidths are affected when superconductivity sets in. The application of pressure in CaFe2As2 transforms the system from a magnetically ordered orthorhombic material to a ‘collapsed’ non-magnetic tetragonal system which is superconducting at lower T when anisotropic pressure is applied. Fe1+xTe shows a transition from a monoclinic to orthorhombic low T structure with increasing x, and a crossover from commensurate to incommensurate magnetic order. Se doping suppresses the magnetic order, while incommensurate magnetic scattering is observed in the superconducting regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de la Cruz, C., Huang, Q., Lynn, J. W., Li, J., Ratcliff, W. II, Zarestky, J. L., Mook, H. A., Chen, G. F., Luo, J. L., Wang, N. L., and Dai, P., Nature 453, 899 (2008).Google Scholar
2. Huang, Q., Zhao, J., Lynn, J. W., Chen, G. F., Lou, J. L., Wang, N. L., and Dai, P., Phys. Rev. B 78, 054529 (2008).Google Scholar
3. Zhao, J., Huang, Q., de al Cruz, C., Li, S., Lynn, J. W., Chen, Y., Green, M. A., Chen, G. F., Li, G., Li, Z. C., Luo, J. L., Wang, N. L., and Dai, P., Nature Materials (DOI 10.1038/nmat2315).Google Scholar
4. Chen, Y., Lynn, J. W., Li, J., Li, G., Chen, G. F., Luo, J. L., Wang, N. L., Dai, Pengcheng, dela Cruz, C., and Mook, H. A., Phys. Rev. B 78, 064515 (2008).Google Scholar
5. Qiu, Y., Bao, W., Huang, Q., Yildirim, T., Simmons, J. M., Green, M. A., Lynn, J.W., Gasparovic, Y.C., Li, J., Wu, T., Wu, G., and Chen, X.H., Phys. Rev. Lett. (in press).Google Scholar
6. Zhao, Jun, Huang, Q., de la Cruz, Clarina, Lynn, J. W., Lumsden, M. D., Ren, Z. A., Yang, Jie, Shen, Xiaolin, Dong, Xiaoli, Zhao, Zhongxian, and Dai, Pengcheng, Phys. Rev. B 78, 132504 (2008).Google Scholar
7. Huang, Q., Qiu, Y., Bao, W., Lynn, J.W., Green, M.A., Gasparovic, Y.C., Wu, T., Wu, G., and Chen, X. H., Phys. Rev. Lett. (in press).Google Scholar
8. Zhao, J., Ratcliff-II, W., Lynn, J. W., Chen, G. F., Luo, J. L., Wang, N. L., Hu, Jiangping, and Dai, Pengcheng, Phys. Rev. B 78, 140504(R) (2008).Google Scholar
9. Kreyssig, A., Green, M. A., Lee, Y. B., Samolyuk, G. D., Zajdel, P., Lynn, J. W., Bud'ko, S. L., Torikachvili, M. S., Ni, N., Nandi, S., Leão, J., Poulton, S. J., Argyriou, D. N., Harmon, B. N., Canfield, P. C., McQueeney, R. J., and Goldman, A. I., Phys. Rev. B 78 (in press).Google Scholar
10. Goldman, A. I., Kreyssig, A., Prokes, K., Pratt, D. K., Argyriou, D. N., Lynn, J. W., Nandt, S., Kimber, S. A., Chen, Y., Lee, Y. B., Samolyuk, G., Leao, J., Poulton, S. J., Bud'ko, S. L., Ni, N., Canfield, P. C., Harmon, B. N., and McQueeney, R. J., Phys. Rev. B (submitted).Google Scholar
11. McQueen, T. M., Regulacio, M., Williams, A. J., Huang, Q., Lynn, J. W., Hor, Y. S., West, D.V., and Cava, R. J., Phys. Rev. B78, 214305 (2008).Google Scholar
12. Lynn, J. W. and Skanthakumar, S., Handbook on the Physics and Chemistry of Rare Earths, Chap. 199, Vol. 31, pg. 315350, ed. by Gschneidner, K. A. Jr., Eyring, L., and Maple, M. B. (North Holland, Amsterdam, 2001).Google Scholar
13. Chen, H., Ren, Y., Qiu, Y., Bao, Wei, Liu, R. H., Wu, G., Wu, T., Xie, Y. L., Wang, X. F., Huang, Q., Chen, X. H. (submitted).Google Scholar
14. Bao, W., Qiu, Y., Huang, Q., Green, M.A., Zajdel, P., Fitzsimmons, M.R., Zhernenkov, M., Fang, M., Qian, B., Vehstedt, E.K., Yang, J., Pham, H.M., Spinu, L., Mao, Z.Q. (submitted).Google Scholar
15. Li, S., de la Cruz, C., Huang, Q., Chen, Y., Lynn, J. W., Hu, J., Huang, Y-L, Hsu, F-C., Yeh, K-W., Wu, M-K., and Dai, P., Phys. Rev. B (submitted).Google Scholar
16. Zhao, J., Dao-Xin, Yao, Shiliang, Li, Hong, Tao, Chen, Y., Chang, S., Ratcliff, W. II, Lynn, J. W., Mook, H. A., Chen, G. F., Luo, J. L., Wang, N. L., Carlson, E. W., Jiangping, Hu, and Pengcheng, Dai, Phys. Rev. Lett. 101, 167203 (2008).Google Scholar
17. Qiu, Y., Kofu, M., Bao, Wei, Lee, S.-H., Huang, Q., Yildirim, T., Copley, J. R. D., Lynn, J. W., Wu, T., Wu, G., and Chen, X. H., Phys. Rev. B 78, 052508 (2008).Google Scholar
18. Chi, S., Adroja, D. T., Guidi, T., Bewley, R., Li, Shliang, Zhao, Jun, Lynn, J. W., Brown, C. M., Qiu, Y., Chen, G. F., Lou, J. L., Wang, N. L., and Dai, Pengcheng, Phys. Rev. Lett. 101, 167203 (2008).Google Scholar