Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T11:06:06.570Z Has data issue: false hasContentIssue false

Neutron Scattering Studies of Network Glasses

Published online by Cambridge University Press:  22 February 2011

Adrian C. Wright
Affiliation:
J. J. Thomson Physical Laboratory, Reading University,Whiteknights, Reading, RG6 2AF, U.K.
Behnam Vessal
Affiliation:
Biosym Technologies, 9685 Scranton Road, San Diego, CA 92121-2777, U.S.A.
Bilber Bachra
Affiliation:
J. J. Thomson Physical Laboratory, Reading University,Whiteknights, Reading, RG6 2AF, U.K.
Robert A. Hulme
Affiliation:
J. J. Thomson Physical Laboratory, Reading University,Whiteknights, Reading, RG6 2AF, U.K.
Roger N. Sinclairc
Affiliation:
Industrial Technology, Harwell Laboratory, Didcot, OX11 ORA, U.K.
Alexis G. Clare
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, NY 14802-1296, U.S.A.
David I. Grimley
Affiliation:
J. J. Thomson Physical Laboratory, Reading University,Whiteknights, Reading, RG6 2AF, U.K.
Get access

Abstract

A review is presented of recent neutron diffraction studies of silicate and borate glasses, using a combination of steady-state reactor and pulsed neutron sources. The samples studied include both single component glasses and binary systems, consisting of a network modifier plus a network former, and the data have been extended to high magnitudes of the scattering vector, Q, to achieve high real-space resolution. Peak fitting techniques are employed to extract the detailed geometry of the basic structural units and to investigate the distortions caused by the introduction of network modifiers. The data are compared to various structural models and conclusions are drawn not only with regard to the validity of the structural models themselves but also concerning the environment of the network modifying cations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wright, A.C., in Experimental Techniques of Glass Science, edited by Simmons, C.J. and El-Bayoumi, O.H. (Amer. Ceram. Soc., Westerville, 1993), pp. 205314.Google Scholar
2 Zachariasen, W.H., J. Amer. Chem. Soc. 54, 3841 (1932).Google Scholar
3 Sinclair, R.N. and Wright, A.C., J. Non-Cryst. Solids 57, 447 (1983).Google Scholar
4 Johnson, P.A.V., Wright, A.C. and Sinclair, R.N., J. Non-Cryst. Solids 58, 109 (1983).Google Scholar
5 Grimley, D.I., Wright, A.C. and Sinclair, R.N., J. Non-Cryst. Solids 119, 49 (1990).Google Scholar
6 Wright, A.C., J. Non-Ciyst. Solids 159, 264 (1993).Google Scholar
7 Wright, A.C., Clare, A.G., Bachra, B., Sinclair, R.N., Hannon, A.C. and Vessal, B., Trans. A.C.A.,27, 239(1991).Google Scholar
8 Konnert, J.H. and Karle, J., Acta Crystallogr. A29, 702 (1973).Google Scholar
9 Hannon, A.C., Grimley, D.I., Hulme, R.A., Wright, A.C. and Sinclair, R.N., J. Non-Cryst. Solids 177, 299 (1994).Google Scholar
10 Elliott, S.R., J. Non-Ciyst. Solids 97&98, 159 (1987).Google Scholar
11 Jellison, G.E. Jr., Panek, L.W., Bray, P.J. and Rouse, G.B. Jr., J. Chem. Phys. 66, 802 (1977).Google Scholar
12 Johnson, P.A.V., Wright, A.C. and Sinclair, R.N., J. Non-Ciyst. Solids 50, 281 (1982).Google Scholar
13 Bell, R.J. and Dean, P., Philos. Mag. 25, 1381 (1972).Google Scholar
14 Gaskell, P.H. and Tanant, I.D., Philos. Mag. B42, 265 (1980).Google Scholar
15 Williams, S.J. and Elliott, S.R., in The Structure of Non-Crystalline Materials 1982, edited by Gaskell, P.H., Parker, J.M. and Davis, E.A. (Taylor and Francis, London, 1983), pp. 407416.Google Scholar
16 Krogh-Moe, J. and Ihara, M., Acta Crystallogr. 23, 427 (1967).Google Scholar
17 Wright, A.C., Vedishcheva, N.M. and Shakhmatkin, B.A., J. Non-Cryst. Solids (in press).Google Scholar
18 Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., J. Chem. Phys. 21, 1087 (1953).Google Scholar
19 McGreevy, R.L. and Pusztai, L., Molec. Simul. 1, 359 (1988).Google Scholar
20 Keen, D.A. and McGreevy, R.L., Nature 344, 423 (1990).Google Scholar
21 Gladden, L.F., J. Non-Ciyst. Solids 119,318(1990).Google Scholar
22 Wright, A.C., Hulme, R.A., Grimley, D.I., Sinclair, R.N., Martin, S.W., Price, D.L. and Galeener, F.L., J. Non-Cryst. Solids 129, 213 (1991).Google Scholar
23 Gladden, L.F., in The Physics of Non-Crystalline Solids, edited by Pye, L.D., LaCourse, W.C. and Stevens, H.J. (Taylor and Francis, London, 1992), pp. 9195.Google Scholar
24 Soules, T.F., J. Non-Cryst. Solids 123, 48 (1990).Google Scholar
25 Woodcock, L.V., Angell, C.A. and Cheeseman, P., J. Chem. Phys. 65, 1565 (1976).Google Scholar
26 Pauling, L., J. Amer. Chem. Soc. 51, 1010 (1929).Google Scholar
27 Vessal, B., Amini, M. and Catlow, C.R.A., J. Non-Cryst. Solids 159, 184 (1993).Google Scholar
28 Krogh-Moe, J., Phys. Chem. Glasses 3, 1 (1962).Google Scholar
29 Warren, B.E. and Biscoe, J., J. Amer. Ceram. Soc. 21, 259 (1938).Google Scholar
30 Greaves, G.N., J. Non-Cryst. Solids 71, 203 (1985).Google Scholar
31 Wright, A.C., Bachra, B., Vessal, B., Clare, A.G., Sinclair, R.N. and Hannon, A.C., in Fundamentals of Glass Science and Technology (ESG, Venice, 1993) pp. 211216.Google Scholar
32 Pant, A.K. and Cruickshank, D.W.J., Acta Crystallogr. B24, 13 (1968).Google Scholar
33 Rawson, H., Inorganic Glass-Forming Systems (Academic Press, London, 1967), p. 98.Google Scholar
34 Vedishcheva, N.M., Shakhmatkin, B.A., Wright, A.C., Grimley, D.I., Etherington, G. and Sinclair, R.N., in Fundamentals of Glass Science and Technology (ESG, Venice, 1993) pp. 459462.Google Scholar
35 Bray, P.J., Leventhal, M. and Hooper, H.O., Phys. Chem. Glasses 4, 47 (1963).Google Scholar
36 Krogh-Moe, J. and Wold-Hansen, P.S., Acta Crystallogr. B29, 2242 (1973).Google Scholar