Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:59:53.399Z Has data issue: false hasContentIssue false

Neutralization Rates for Low-Energy Ions Scattered From Solid Surfaces

Published online by Cambridge University Press:  28 February 2011

Elliott A. Eklund
Affiliation:
Department of Chemistry & Biochemistry and Solid State Science Center University of California, Los Angeles, CA 90024
Richard S. Daley
Affiliation:
Department of Chemistry & Biochemistry and Solid State Science Center University of California, Los Angeles, CA 90024
Judy H. huang
Affiliation:
Department of Chemistry & Biochemistry and Solid State Science Center University of California, Los Angeles, CA 90024
R. Stanley Williams
Affiliation:
Department of Chemistry & Biochemistry and Solid State Science Center University of California, Los Angeles, CA 90024
Get access

Abstract

Calculations of the angular distributions of scattered ions were used to simulate impact collision ion scattering spectrometry (ICISS) experiments. The calculations were performed first for 2–keV Na+ ions incident on the Pt(111) surface in the <112> azimuth. The fitting of these calculations to the experimental data provided information about the surface structure of the sample and the trajectories of the incident ions. The inclusion of a first-order decay model for Auger neutralization with the calculations for Na+ allowed the simulation of 2-keV Ne+ ions in the ICISS mode on the same Pt surface. From these simulations it was possible to extract the Auger neutralization halflife for Ne+, found to be 1.30 ± 0.10 femtoseconds.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Buck, T. M., Wheatley, G. H. and Verheij, L. K., Surface Sci. 90, 635 (1979).Google Scholar
2. Taglauer, E., Englert, W., Heiland, W. and Jackson, D. P., Phys.Rev.Lett. 45, 740 (1980).Google Scholar
3. Overbury, S. H., Surface Sci. 112, 23 (1981).Google Scholar
4. Algra, A. J., van Loenen, E., Suurmeijer, E. P.Th. M. and Boers, A. L., Radiation Effects 60, 173 (1982)Google Scholar
5. Aono, M., Oshima, C., Zaima, S., Otani, S. and Ishizawa, Y., Japan.J. Appl.Phys. 20, L829 (1981).Google Scholar
6. Yarmoff, J. A. and Williams, R. S., Surface Sci. 166, 101 (1986).Google Scholar
7. Niehus, H. and Comsa, G., Nucl. Instr. and Methods in Phys. Res. B 15, 122 (1986).Google Scholar
8. Torrens, I. M., Interatomic Potentials (Academic Press, New York, 1974)Google Scholar
9. Van der Veen, J. F., Surface Sci. Reports 5, 199 (1985).Google Scholar
10. Kesmodel, L. L. and Somorjai, G. A., Phys.Rev. B 11 (2), 630 (1975)Google Scholar
11. Treglia, G. and Desjonqueres, M. C., J.Physique 46, 987 (1985).Google Scholar
12. Yarmoff, J. A. and Williams, R. S., Surf.Sci. 127, 461 (1983).Google Scholar
13. Yarmoff, J. A., Cyr, D. M., Huang, J. H., Kim, S., and Williams, R. S., Phys.Rev.B. 33, 3856 (1985).Google Scholar
14. Huang, J. H., Daley, R. S., Shuh, D. K., and Williams, R.S., Surf.Sci.,to be published.Google Scholar
15. Verhey, L. K., Poelsema, B. and Boers, A.L., Nucl.Instr.& Methods 132, 565 (1976).Google Scholar
16. Woodruff, D. P., Nucl. Instr. and Methods 194, 639 (1982).CrossRefGoogle Scholar
17. Hagstrum, H. D., Phys. Rev. 96, 336 (1954).Google Scholar
18. Lee, H. W. and George, T. F., Surface Sci. 172, 211 (1986).Google Scholar
19. Souda, R., Aono, M., Oshima, C., Otani, S., Ishizawa, Y., Surface Sci. 128, L236 (1983).Google Scholar
20. Garrison, B. J., Surface Sci. 87, 683 (1979).Google Scholar
21. Chang, C. C., DeLouise, L. A., Winograd, N. and Garrison, B. J., Surface Sci. 154, 22 (1985).CrossRefGoogle Scholar