Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:51:09.064Z Has data issue: false hasContentIssue false

Neuronal Alignment and Outgrowth on Microwrinkled Conducting Polymer Substrates

Published online by Cambridge University Press:  01 June 2015

Alberto Bonisoli
Affiliation:
Center for Micro-BioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Attilio Marino
Affiliation:
Center for Micro-BioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Gianni Ciofani
Affiliation:
Center for Micro-BioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Francesco Greco
Affiliation:
Center for Micro-BioRobotics IIT@SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
Get access

Abstract

We report on the results of culturing SH-SY5Y neuron-like cells on PEDOT:PSS wrinkled surfaces fabricated by thermally-induced shrinking of commercial polystyrene sheets. Such smart biointerfaces combine the functional properties of conducting polymers with the topographic patterning at the micro- and sub-microscale, as a result of surface wrinkling. By imposing mechanical constraints during shrinking, anisotropic topographic features are formed, with a spatial periodicity in the range 0.7 - 1.2 μm, tunable by varying the thickness of the PEDOT:PSS thin film. The effectiveness of wrinkled surfaces in enhancing and orientating the outgrowth of neurites is demonstrated by a 42% increase in length and by the 85% of neurites aligned along wrinkles direction (angle 0 < θ < 15°), after 5 days of differentiation. Furthermore, the conductive properties of the PEDOT:PSS film are retained after the surface wrinkling, opening the way for the exploitation of these smart biointerfaces for the electrical stimulation of cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bettinger, C. J., Langer, R. and Borenstein, J. T., Angew Chem Int Ed Engl 48, 5406 (2009).CrossRefGoogle Scholar
Genchi, G. G., Ciofani, G., Polini, A., Liakos, I., Iandolo, D., Athanassiou, A., Pisignano, D., Mattoli, V. and Menciassi, A., J Tissue Eng Regen Med 9, 151 (2015).CrossRefGoogle Scholar
Marino, A., Ciofani, G., Filippeschi, C., Pellegrino, M., Pellegrini, M., Orsini, P., Pasqualetti, M., Mattoli, V. and Mazzolai, B., ACS Appl Mater Interfaces 5, 13012 (2013).CrossRefGoogle Scholar
Genzer, J. and Groenewold, J., Soft Matter 2, 310 (2006).CrossRefGoogle Scholar
Chen, A., Lieu, D. K., Freschauf, L., Lew, V., Sharma, H., Wang, J., Nguyen, D., Karakikes, I., Hajjar, R. J., Gopinathan, A., Botvinick, E., Fowlkes, C. C., Li, R. A. and Khine, M., Adv Mater 23, 5785 (2011).CrossRefGoogle Scholar
Luna, J. I., Ciriza, J., Garcia-Ojeda, M. E., Kong, M., Herren, A., Lieu, D. K., Li, R. A., Fowlkes, C. C., Khine, M. and McCloskey, K. E., Tissue Eng Part C Methods 17, 579 (2011).CrossRefGoogle Scholar
Chen, A., Lee, E., Tu, R., Santiago, K., Grosberg, A., Fowlkes, C. and Khine, M., Biomaterials 35, 675 (2014).CrossRefGoogle Scholar
Berggren, M. and Richter-Dahlfors, A., Adv Mater 19, 3201 (2007).CrossRefGoogle Scholar
Malliaras, G. G., Biochim Biophys Acta 1830, 4286 (2013).CrossRefGoogle Scholar
Greco, F., Fujie, T., Ricotti, L., Taccola, S., Mazzolai, B. and Mattoli, V., ACS Appl Mater Interfaces 5, 573 (2013).CrossRefGoogle ScholarPubMed
Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H., Baharvand, H., Kiani, S., Al-Deyab, S. S. and Ramakrishna, S., J Tissue Eng Regen Med. 5, e17 (2011).CrossRefGoogle Scholar
Greco, F., Zucca, A., Taccola, S., Menciassi, A., Fujie, T., Haniuda, H., Takeoka, S., Dario, P. and Mattoli, V., Soft Matter 7, 10642 (2011).CrossRefGoogle Scholar
Mott, P. H., Dorgan, J. R. and Roland, C. M., J Sound Vib 312, 572 (2008).CrossRefGoogle Scholar
Gedde, U., Polymer Physics, Springer Science & Business Media, 1995.Google Scholar