Published online by Cambridge University Press: 15 February 2011
A defect has negative-U properties if it can trap two electrons (or holes) with the second bound more strongly than the first. It is as if there were a net attraction between the two carriers (negative Hubbard correlation energy U) at the defect, and the defect energy levels in the gap are therefore inverted from their normal order. Experimental evidence is presented that interstitial boron and the lattice vacancy, both common simple point defects produced by electron irradiation of silicon, have this unusual property. These defects represent the first and only concrete examples of negative-U centers in any material and serve as models for an understanding of the phenomenon.
Research supported by the U.S. Navy, ONR Electronics and Solid State Sciences Program, Contract No. N00014-76-C-1097.