Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:03:55.205Z Has data issue: false hasContentIssue false

Negative Electron Affinity Effects And Schottky Barrier Height Measurements Of Metals On Diamond (100) Surfaces

Published online by Cambridge University Press:  10 February 2011

P. K. Baumann
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
Get access

Abstract

In this study copper and cobalt films have been deposited on natural type IIb single crystal semiconducting diamond (100) surfaces in ultra-high vacuum (UHV). Prior to metal deposition the diamond crystals have been cleaned by a 1150°C anneal in UHV. This treatment resulted in positive electron affinity surfaces. Upon deposition of 2Å of Cu or Co a negative electron affinity (NEA) was observed. Schottky barrier heights of 0.70 eV and 0.35 eV were found for Cu and Co respectively. In-situ Auger electron spectroscopy (AES) was employed to confirm the presence of a metal layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Himpsel, F. J., Eastman, D. E., Heimann, P. and van der Veen, J. F., Phys Rev. B 24, 7270 (1981).Google Scholar
2. Pate, B. B., Hecht, M. H., Binns, C., Lindau, I. and Spicer, W.E., J. Vac. Sci. Technol. 21, 364 (1982).Google Scholar
3. Baumann, P. K., Humphreys, T. P. and Nemanich, R. J., in Diamond, SiC and Nitride Wide Bandgap Semiconductors. edited by Carter, C. H., Gildenblat, G., Nakamura, S., Nemanich, R. J., (Mater. Res. Soc. Proc. 339, Pittsburgh, PA, 1994) 69–74.Google Scholar
4. van der Weide, J. and Nemanich, R. J., Appl. Phys. Lett. 62 (1993) 1878.Google Scholar
5. van der Weide, J., Zhang, Z., Baumann, P. K., Wensell, M. G., Bernholc, J. and Nemanich, R. J., Phys. Rev. B 50 (1994) 5803.Google Scholar
6. Baumann, P. K. and Nemanich, R. J., Proc. of the 5th European Conference on Diamond, Diamond-like and Related Materials, Eds. Bachmann, P. K., Buckley-Golder, I. M., Glass, J. T., Kamo, M.: J. Diamond Rel. Mat., 4 (1995) 802.Google Scholar
7. van der Weide, J. and Nemanich, R. J., J. Vac. Sci. Technol. B 10 (1992) 1940.Google Scholar
8. van der Weide, J. and Nemanich, R. J., Phys. Rev. B, 49 (1994) 13629.Google Scholar
9. Baumann, P. K. and Nemanich, R. J., Appl. Surf. Sci., accepted for publication.Google Scholar
10. Baumann, P. K., Humphreys, T. P., Nemanich, R. J., Ishibashi, K., Parikh, N. R., Porter, L. M. and Davis, R. F., Proc. of the 4th European Conference on Diamond, Diamond-like and Related Materials, Eds. Bachmann, P. K., Buckley-Golder, I. M., Glass, J. T., Kamo, M.: J. Diamond Rel. Mat. 3 (1994) 883.Google Scholar
11. Mead, C. A. and McGill, T. C., Phys. Lett. 58A (1976) 149.Google Scholar
12. Himpsel, F. J., Eastman, D. E. and van der Veen, J. F., J. Vac. Sci. Technol. 17 (1980) 1085.Google Scholar
13. Himpsel, F. J., Heimann, P. and Eastman, D. E., Sol. State Commun. 36, 631 (1980).Google Scholar
14. Glesener, J. W., Morrish, A. A. and Snail, K. A., J. Appl. Phys. 70 (1991) 5144.Google Scholar
15. Geis, M. W., Rathman, D. D., Ehrlich, D. J., Murphy, R. A. and Lindley, W. T., IEEE Electron Device Lett. 8 (1987) 341.Google Scholar
16. Shiomi, H., Nakahata, H., Imai, T., Nishibayashi, Y. and Fujimori, N., Jpn. J. Appl. Phys. 28 (1989) 758.Google Scholar
17. Tachibachi, T., Williams, B. E. and Glass, J. T., Phys. Rev. B 45 (1992) 11975 Google Scholar
18. Hicks, M. C., Wronski, C. R., Grot, S. A., Gildenblat, G. S., Badzian, A. R., Badzian, T. and Messier, R., J. Appl. Phys. 65 (1989) 2139.Google Scholar
19. Grot, S. A., Lee, S., Gildenblat, G. S., Hatfield, C. W., Wronski, C. R., Badzian, A. R., Badzian, T. and Messier, R., J. Mater. Res. 5 (1990) 2497.Google Scholar
20. Pate, B. B., Spicer, W. E., Ohta, T. and Lindau, I., J. Vac. Sci. Technol. 17 (1980) 1087.Google Scholar
21. Marchywka, M., Pehrsson, P. E., Binari, S. C. and Moses, D., J. Electrochem. Soc., 140, No. 2 (1993) L19.Google Scholar
22. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts (Clarendon, Oxford, 1988).Google Scholar
23. Erwin, S. C. and Pickett, W. E., Surf. Coat. Technol. 47 (1991) 487.Google Scholar
24. Erwin, S. C. and Pickett, W. E., Solid State Commun. 81 (1992) 891.Google Scholar
25. Pickett, W. E. and Erwin, S. C., Phys. Rev. B 41 (1990) 9756.Google Scholar
26. Pickett, W. E. and Erwin, S. C., Superlatt. Microsruct. 7 (1990) 335.Google Scholar
27. Pickett, W. E., Pederson, M. R. and Erwin, S. C., Mater. Sci. Eng. B 14 (1992) 87.Google Scholar
28. Lambrecht, W. R. L., Physica B 185 (1993) 512.Google Scholar
29. Geis, M. W., Twichell, J. C., Macaulay, J., Okano, K., Appl. Phys. Lett. 67 (1995) 1.Google Scholar