No CrossRef data available.
Published online by Cambridge University Press: 05 August 2013
Metal-assisted chemical etching (MACE) of silicon (Si) is a simple and low-cost process to fabricate Si nanostructures with varying aspect ratio and properties. In this work, we report on the structural and vibrational properties of Si nanostructures synthesized with varying metal catalyst. The morphology of the synthesized nanowires was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical and vibrational properties of the Si nanostructures were studied by photoluminescence and Raman spectroscopy using three different excitation sources (UV, visible and near-infrared) and are correlated to their microstructures. We propose that the excessive injection of holes into Si at the metal-Si interface and its diffusion to the nanowire surfaces facilitate the etching of Si on these surfaces, leading to a mesoporous network of Si nanocrystallites. When etched with catalytic Au nanoparticles, “hay-stacked” mesoporous Si nanowires were obtained. The straighter nanowires etched with Ag nanoparticles, consisted of a single crystalline core with a thin porous layer that decreased in thickness towards the base of the nanowire. This difference is due to the higher catalytic activity of Au compared to Ag for H2O2 decomposition. The SERRS observed during UV and visible Raman with Ag-etched Si nanowires and near-infrared Raman with Au-etched Si nanowires is due to the presence of the sunken metal nanoparticles. In addition, we explored the influence of varying H2O2 and HF concentration as well as the influence of increased etching temperature on the resultant nanostructured Si morphology. Such Si nanostructures may be useful for a wide range of applications such as photovoltaic and biological and chemical sensing.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.