Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T23:36:22.428Z Has data issue: false hasContentIssue false

Near Field Optical Spectroscopy of GaN/AlN Quantum Dots

Published online by Cambridge University Press:  01 February 2011

A. Neogi
Affiliation:
Department of Physics and Materials Engineering, University of North Texas, Denton, TX, USA.
B. P. Gorman
Affiliation:
Department of Physics and Materials Engineering, University of North Texas, Denton, TX, USA.
H. Morkoç
Affiliation:
Department of Electrical Eng., Virginia Commonwealth University, Richmond, VA, USA.
T. Kawazoe
Affiliation:
Department of Electrical Engineering, University of Tokyo, Japan
M. Ohtsu
Affiliation:
Department of Electrical Engineering, University of Tokyo, Japan
M. Kuball
Affiliation:
Department of Electrical Engineering, University of Bristol, U.K.
Get access

Abstract

We investigate the spatial distribution and emission properties of self-assembled GaN/AlN quantum dots. High-resolution transmission electron microscopy reveals near vertical correlation among the GaN dots due to a sufficiently thin AlN spacer layer thickness, which allows strain induced stacking. Scanning electron and atomic force microscopy show lateral coupling due to a surface roughness of ∼ 50–60 nm. Near-field photoluminescence in the illumination mode (both spatially and spectrally resolved) at 10 K revealed emission from individual dots, which exhibits size distribution of GaN dots from localized sites in the stacked nanostructure. Strong spatial localization of the excitons is observed in GaN quantum dots formed at the tip of self-assembled hexagonal pyramid shapes with six [101 1] facets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

1. Cao, W., Muñoz, A., Palffy-Muhoray, P. and Taheri, B., Nature Materials, 1, 111113 (2002).Google Scholar
2. Neogi, A., Kopf, R. E., Baca, A.G., Pearton, S.J., and Ren, F., Electrochemical Society, 181 (2003).Google Scholar
3. Morkoç, H., Neogi, A., Kuball, M.,, Mat. Res. Soc. Symp. Proc., 794, T6.5.1/N8.5.1/Z6.5.1. (2004)Google Scholar
4. Neogi, A.., Everitt, H., Morkoç, H., Kuroda, T., Tackeuchi, A., IEEE Transactions on Nanotechnology, 2, 1014 (2003).Google Scholar
5. Morkoç, H., Reshchikov, M.A, Jones, K.M., Yun, F., Visconti, P., Nathan, M.I., and Molnar, R.J., Proc. Mater. Res. Soc. Conf. 80, 576, (2000).Google Scholar
6. Morkoç, H., “Nitride Semiconductors and Devices”, Springer Series in Materials Science, 32, (1999), Springer Verlag.Google Scholar
7. Huang, D., Reshchikov, M.A., and Morkoç, H., Int. Journal of High Speed Electronics and Systems, 12, 79 (2002).Google Scholar
8. Martin, B. R., Dermody, D. J., Reiss, B. D., Fang, M., Lyon, L. A., Natan, M. J., and Mallouk, T. E., Adv. Mater. 11, 10211025 (1999)Google Scholar
9. Neogi, A. and Morkoç, H., Nanotechnology, 15, 12521255(2004).Google Scholar
10. Rinaldi, R, Maruccio, G, Biasco, A, Arima, V, Cingolani, R, Giorgi, T, Masiero, S, Spada, G P and Gottarelli, G, Nanotechnology, 13, 398403(2002).Google Scholar
11. Widmann, F. et al, Phys. Rev. B 58, R15989 (1998); Microelectronic journal, 30, 353 (1999).Google Scholar
12. Kim, J.C., Rho, H., Smith, L.M., Jackson, H.E., Lee, S., Furdyna, J.K., Appl. Phys. Lett., 75, 214 (1999)Google Scholar
13. Krammerer, C., Voisin, C., Cassabois, G., Delalande, C., Roussignol, Ph., Klopf, F., Reithmaier, J.P., Phys. Rev., B 66, 041306R (2002).Google Scholar
14. Neogi, A., Everitt, H., Morkoç, H., Kuroda, T., Tackeuchi, A., IEEE Transactions on Nanotechnology, 5, [2005] [In Press]Google Scholar